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Theory and Applications of Machine Learning Fairness:
Review from the Perspective of Fairness Tester Aequitas

Yemi Shin, Yunping Wang, Michael Worrell, and Juanito Zhang Yang
Department of Computer Science, Carleton College, 300 North College Street, Northfield, MN,
55057

(Dated: March 16, 2022)

In recent years, an increase in application for machine learning gave rise to the discipline of machine learning fairness.
Machine learning fairness is the study that aims to reduce the inherent discrimination present in all models. This
survey paper aims to explore the theory and application of machine learning fairness through the lens of the algorithm
Aequitas. Aquitas is a preprocessing bias-correcting algorithm that implements individual and counterfactual fairness.
To understand the algorithm We first address the theory of machine learning and give a overview of the landscape of
fairness. After that, the algorithm Aquitas is studied in more detail, especially its mathematical background and code
implementation.
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I. INTRODUCTION

In recent years, machine learning has gradually become an
integral tool in our everyday lives. Machine learning is used to
determine whether a bank should issue a loan to someone1, a
company should hire someone2, and in certain extreme cases,
how long someone’s criminal sentence should be3,4. How-
ever, this up-ticking in range of application for machine learn-
ing is not necessarily a net positive for the society. In par-
ticular, since machine learning refers to the process of using
real-world data to improve upon a computer program, pre-
existing social biases in those data may carry through the re-
sulting model. These biases may then be propagated further
when biased models are used in real world applications, cre-
ating potential discrimination5.

Thus, a new field of study is emerging that aims to coun-
teract these biases, namely machine learning fairness, a disci-
pline where we examine the intrinsic biases in machine learn-
ing models and devise algorithms to adjust our model to be
resilient to these biases. One of these algorithms is call Ae-
quitas, developed by Udeshi et al and presented in the paper
Automated Directed Fairness Testing6.

In this paper, we will give an overview of the field of ma-
chine learning fairness and explore Aequitas in more detail. In
the first half of the paper, we will provide the necessary back-
ground information to understand the algorithm and its signif-
icance in the overall machine learning fairness landscape. In
the second half, we will provide an overview and explanation
of the Aequitas algorithm.

We will start our discussion by developing the theoretical
framework of machine learning that can aid us in understand-
ing Aequitas. In Section II, we will discuss the basic theory
of machine learning. We will then develop the theory of train-
ing machine learning models in Section III. Building on that,
in Section IV, we will discuss three machine learning mod-
els that are relevant to Aequitas: decision tree, random forest
and support vector machines (SVM). This will conclude our
excursion into the theory of machine learning.

Starting from Section V, we shift our focus to machine
learning fairness. In this section, we aim to give an overview
of the field of machine learning fairness by discussing dif-
ferent definitions of fairness and how they can be applied to
various circumstances. We will also discuss common strate-
gies that are used to enforce these types of fairness in a ma-
chine learning model. This section will provide background
information for us to place Aequitas within the larger field of
fairness and pinpoint the exact problem that it tries to address.

The last necessary piece of information that is needed will
be the mathematical principle behind Aequitas’s operation.
Aequitas leverages two main mathematical concepts in its im-
plementation: robustness in machine learning model and the
law of large numbers. We will discuss the rigorous details of
machine learning robustness in Section VI and law of large
numbers in Section VII.

After presenting all the relevant information needed to un-
derstand Aequitas, we will explore the algorithm itself in Sec-
tion IX. The original author also provides a proof of concept
implementation for the algorithm in Python, which we will

discuss in the Appendix.

II. FUNDAMENTALS OF MACHINE LEARNING

To start the discussion of the theory behind machine learn-
ing, we will need to define what learning is. Learning occurs
when an agent improves its performance after making an ob-
servation about the world. An agent can make observations
through a data set. A data set is a set of input-output pairs. In
this paper, the input in the data set will be in factored represen-
tation. A factored representation refers to a vector of attribute
values (x1,x2, . . . ,xn). As for the output, we will focus on two
main types of output: classification and regression. A classi-
fication is when an output is one of a finite set of values, e.g.,
true/false. A regression is when the output is a continuous
number7.

We characterize the idea of learning through the concept
of feedback. Specifically, we divide machine learning algo-
rithms into three sub-categories: 1), Supervised Learning, 2),
Unsupervised Learning, and 3), Reinforcement Learning. We
call a learning process supervised if the agent observes input-
output pairs and learns a function that best maps input to out-
put. We call a learning process unsupervised if the agent
learns patterns without explicit feedback from the program-
mer. Finally, we call a learning process reinforced if the agent
learns from a series of reinforcement taking the form of re-
wards and punishment. In this paper, we will focus our atten-
tion on supervised machine learning.

A. Supervised Learning

Here we provide a formal definition of supervised learning:

Definition II.1 (Supervised Learning). 7 Given a training set
of N example input-output pairs

(x1,y1),(x2,y2), . . . ,(xn,yn),

where each pair is generated by an unknown function y =
f (x), discover a function h that approximates the true func-
tion y.

We call h the hypothesis function about the world (or model
of the world), and we define the function space of all possible
h as the hypothesis space/model class H . We also define the
output yi as the ground truth.

With Definition II.1, we are equipped to define a consistent
hypothesis:

Definition II.2 (Consistent Hypothesis). A hypothesis h is
consistent on a training set N if ∀(xi,yi) ∈ N, h(xi) = yi.

To evaluate a hypothesis, we will test it on a test set T that
is different from the training set N. A hypothesis generalizes
well if h(x j) = y j∀(x j,y j) ∈ T .

To analysis how well a hypothesis h generalizes, we will
introduce two ideas: bias and variance, which in turn defines
the concept of underfitting and overfitting.
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Bias refers to the tendency of a predictive hypothesis to
deviate from the expected value when averaged over differ-
ent training set. In other words, a hypothesis that is high on
bias has tendencies to ignore patterns in data sets. We say
that the hypothesis is underfitting the data. Bias often results
from strong restrictions placed over the hypothesis space H .
For example, a hypothesis space of linear function induces a
strong bias as any hypothesis generated will only captures the
overall slope of the data over time and lose any other patterns.

Variance refers to the tendency for the hypothesis to exhibit
massive change from small fluctuations in the training set. Al-
ternatively, a hypothesis with high variance pays too much at-
tention to details that are specific to a particular training set
and fails to generalize over unseen data. We characterize such
hypothesis as overfitting. A typical example of a hypothesis
space that tends to overfit is a high-degree polynomial.7.

III. DEVELOPING MACHINE LEARNING MODELS

The goal of machine learning is to select a hypothesis that
will optimally fit unseen future examples. However, in or-
der to parse this statement, we would first need to spec-
ify the meaning of optimal fit and the restrictions on future
examples7.

We first need to place a restriction onto the dataset. Here
we are assuming that all data a randomly drawn from a pop-
ulation with a probability distribution P. We claim that all
future examples must satisfies the stationary assumption. The
definition of stationary assumption is stated below:

Definition III.1 (Stationary Assumption). We assume that for
an arbitrary data set E, the following are true ∀E j ∈ E:

i), All E j has the same prior probability distribution, or

P(E j) = P(E j+1) = P(E j+2) = . . . ;

ii), All examples are independent of the previous examples,
or

P(E j) = P(E j|E j−1,E j−2, · · ·).

In other words, all examples need to be independent and
identically distributed7.

To define an optimal fit, we first introduce the concept of
error rate, which is the proportion of time that h(x) ̸= y for
an (x,y) example. We define an optimal fit as the hypothesis
that minimizes error rate. Since a model is based on a training
set, we need to evaluate the model on an alternative data set to
make sure that our model is not overfitting. Thus, we will need
a test set comprised of different examples from the training
set.

Before we proceed, we also need to define the idea of a
hyperparameter. A hyperparameter is a parameter that deter-
mines how the model is generated. In other words, it is a
parameter for the model training itself. Therefore, when gen-
erating a model, the programmer has control over the hyper-
parameters.

To summarize, we can write down the following simple
process for supervised learning:

1. Use a training set to train the data

2. Adjust the hyperparameters for the model

3. Test the data on a validation set to see whether the ad-
justment improved the model or not

4. Repeat steps 1 - 3

5. Evaluate the final model on a test set

Note that the validation set here refers to a data set that is
different from both the training set and the test set. The reason
for needing a validation set is that we need to evaluate each
model independently of the data set.

We can break down the task of finding a hypothesis into two
sub-tasks: 1), Model selection, which refers to the process of
choosing a hypotheses space, and 2), Optimization/Training,
which finds the best hypothesis in the space. The study of
model selection is beyond the scope of this paper is best ad-
dressed in textbooks such as Stuart Russell and Peter Norvig’s
Artificial Intelligence: A Modern Approach7.

IV. COMMON MACHINE LEARNING MODELS

In this section we will be discussing some common ma-
chine learning models and their training processes.

A. Decision Tree

A decision tree is a Boolean classifier that maps a vector of
attributes to true/false. In other words, a decision tree hypoth-
esis takes the form

h : An→{true, f alse}, (1)

where elements of An are lists with n elements.
We can modify a Boolean classification into a decision tree

using the following structure: a node in the decision tree is a
test of a single input attribute. A branch is labeled with possi-
ble values of the attribute, and a leaf is a specific classification
that the tree will return. A decision tree thus reaches its deci-
sion by passing through a series of tests, starting from the root
until it reaches one of its leaves. In the remaining sections,
we will consider any example with true output as a positive
example, and f alse output as a negative example.

Note that we can rewrite a Boolean decision tree to the fol-
lowing equivalent logical statement:

Out put⇔ (Path1∨Path2∨Path3∨ . . .), (2)

where each Pathi is a conjunction of the form (Am = vx∧An =
vy∧ . . .) of attribute-value tests that correspond to a path from
the root to a true leaf. The whole expression is then in disjunc-
tive normal form. Thus, any function of propositional logic
can be turned into a decision tree.
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To generate a decision tree from a training set, we will use
a greedy divide-and-conquer algorithm. The main idea be-
hind the algorithm is that we want to test the attribute with the
largest information gain first, and then recursively solve the
smaller sub problems. The full algorithm is given below:

1. If the examples are all positive or negative, we are done.

2. If there are both positive and negative examples, then
choose the attribute with the highest IMPORTANCE to
split them. Then recursively continue testing the sub-
sets.

3. If the are no examples, it means that no examples are in
the train set with this combination of attributes values,
and we return the most common output value from the
training set that were used in constructing the node’s
parent.

4. If there are no attributes, but still both positive and neg-
ative examples, it means that these examples have the
same exact description, but different Boolean classifi-
cations. In other words, the model gave two identical
example different classifications. This can happen due
to error or noise in the data. The best we can do is re-
turn the most common output value from the remaining
sets.

Now we need to define the IMPORTANCE function. To do
that, we need to introduce the concept of information entropy.
Entropy measures the uncertainty of a random variable. Thus,
more information correlates to less entropy. For example, a
random variable with one possible outcome has zero entropy.
Formally, we define entropy of a random variable V as

H(V ) = ∑
k

P(vk) log2
1

P(vk)
=−∑

k
P(vk) log2 P(vk). (3)

For a Boolean random variable that is true with probability q,
we define its entropy B(q) as

B(q)≡−(q log2 q+(1−q) log2(1−q)). (4)

Therefore, for a training set with p positive examples and n
negative examples, the total entropy would be

H(Out put) = B(
p

p+n
). (5)

Moreover, an attribute A with d distinct values divides the
training set E into subsets E1, . . . ,Ed . Each subset Ek has pk
positive examples and nk negative examples. Formally, we
define Ek as

Ek = {e ∈ E : A(e) = Ak}, (6)

where A(e) is the value of attribute A for example e. Thus, if
we know A = Ak, we still need additional

H(Out put|A = Ak) = B(
pk

pk +nk
) (7)

bits of information to determine whether a given example is
positive or negative.

A randomly chosen example from the training set would
have the kth value for an attribute. In other words, it will be in
set Ek with probability

P(e ∈ Ek) =
pk +nk

p+n
= P(A = Ak). (8)

Combining these two results, we can determine the entropy of
the tree after we test for attribute A, or

Remainder(A) = H(Out put|A). (9)

We know that

H(Y |X) = ∑
x

P(X = x)H(Y |X = x). (10)

Using our previous results, we then have

H(Out put|A) =
d

∑
k=1

P(A = Ak)H(Out put|A = Ak) (11)

Remainder(A) =
d

∑
k=1

pk +nk

p+n
B(

pk

pk +nk
) (12)

Now we can define the information gain from the attribute test
on A as the expected reduction in total entropy, or

Gain(A) = H(Out put)−Remainder(A) (13)

⇒ Gain(A) = B(
p

p+n
)−Remainder(A) (14)

Finally, we can formally define a way to quantify the
IMPORTANCE of attributes A as Gain(A).

However, a decision tree algorithm only finds a hypothesis
that best fits the training data, when what we really want is
to generalize for unseen data. With higher attribute count, we
are much more likely to overfit. Therefore, we would need to
introduce the concept of decision tree pruning. Pruning works
by eliminating nodes that are clearly not relevant. We start
with the full tree as last time, but this time we look at test
nodes with only leaf nodes as their descendants. If a test is
irrelevant, we replace the test node with a leaf node. Prun-
ing continues until all test nodes with only leaf nodes as their
descendants are either pruned or accepted as they are.

We now need to decide how to determine whether a test
node is relevant. To do this, we use a statistical significance
test. We start by assuming that there are no underlying pat-
terns (Null hypothesis). We then compute to what extent the
actual data deviates from a total lack of pattern. If the degree
of deviation is statistically unlikely(> 5%), it signifies that
there is a significant pattern in the data.

In our case, if we have v = p+n examples, we can compute
the expected positive p̂k and negative n̂k examples in each sub-
set Ek using the overall ratios of p and n, and compare them
to the actual pk and nk. Thus, we define p̂k and n̂k as such

p̂k = p× vk

v
= p× pk +nk

p+n
, (15)

n̂k = n× vk

v
= n× pk +nk

p+n
. (16)
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We can then compute the deviation using a χ2 test:

∆ =
d

∑
k=1

(pk− p̂k)
2

p̂k
2 +

(nk− n̂k)
2

n̂k
2 (17)

This equation follows the χ2 distribution with d−1 degrees of
freedom. Using this distribution, we see that ∆ = 7.82 would
reject null hypothesis at 5% level, and value below are ac-
cepted. This technique is called χ2 pruning. With this, our
construction of a decision tree is complete.

B. Support Vector Machines

A support vector machines(SVM) is a non-parametric
model that attempts to generate a maximum margin separator.
A maximum margin separator is a decision boundary where
every example on one side of the boundary will have the clas-
sification 1, and every example on the other side will have
the classification −1. We need to develop an algorithm that
generates such decision boundary. Note that since we do not
constrain the dimension of the attribute space, our decision
boundary will be a hyperplane defined by

{⃗x : w⃗ · x⃗ = b}, (18)

where w⃗ and b are the coefficients that we need to find. We
will also define the distance between the decision bound-
ary and the nearest example as d. See Fig. 1 for a two-
dimensional illustration of the problem.

Figure 1. A two-dimensional SVM problem. The top half are the
examples with classification 1, and the bottom half are the example
with classification−1. The line in the center is the decision boundary
with a separation of d to the nearest examples.

Observe that

∀⃗x ∈ 1, w⃗ · x⃗ > b+d, (19)

and

∀⃗x ∈ −1, w⃗ · x⃗ < b−d, (20)

where 1 is the set of examples with classification 1, and −1
is the set of examples with classification −1.

We can now define yi such that for every xi:

yi =

{
1, xi ∈ 1,
−1, xi ∈ −1.

(21)

Then, we can combine Eq. 19, 20 and Eq. 21 to get

yi(w⃗ · x⃗−b)< d. (22)

We can also show that

d =
2
||w⃗||

. (23)

Then, we can rearrange this inequality to get

yi(w⃗ · x⃗i−b)< 1+ ei, (24)

where ei is the error of the decision boundary, or the number
of examples that are placed on the wrong side. Therefore, this
problem has been reduced to a problem of finding

min(∑
i=0

ei + ||w⃗||2). (25)

This is a quadratic programming optimization problem, and
the detail of such algorithm is beyond the scope of this paper.
After solving this for w⃗, we will have our decision boundary.

C. Random Forest

To discuss random forest classifier, we first need to intro-
duce the concept of ensemble learning. Ensemble learning
is the process of selecting a collection of hypotheses(base
model) and combining them to create a joint-decision model.
The main reason for using ensemble learning is that it reduces
bias and variance in our hypothesis.

Random forest is a form of ensemble learning that is based
on a technique called bagging. In bagging, K distinct training
sets are generated by randomly sampling N examples with re-
placement from the original training set. A machine learning
algorithm is then run on the sub-training set to get K hypothe-
ses. These hypotheses are aggregated to make the final pre-
diction. For classification problems, we use plurality vote; for
regression problems, we compute the average:

h(x) =
1
K

K

∑
i=1

hi(x). (26)

Bagging tends to reduce variance and is the standard approach
when the base model overfits.

Random forest is a form of decision tree bagging in which
we take extra steps to make the ensemble of K trees more di-
verse. The key idea is to randomly vary the attribute choice
rather than the training examples. At each point in the con-
struction of the tree, we select a random sampling of n at-
tributes, and compute the one that yields the most information
gain. Consequently, random forests are not pruned and are re-
sistant to overfitting. As more trees are added to the forest, the
error converges.
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V. FAIRNESS IN MACHINE LEARNING

It can be challenging to know what exactly machine learn-
ing fairness is. The field of fairness in machine learning has
been growing in size, coverage, and importance. It has been
growing into its own conferences, and many new papers on
machine learning fairness are released each year.

When relying on the use of software to calculate outcomes
for complicated decision making tasks, it is easy for uninten-
tional bias and discrimination to make their way into more and
more elements of everyday life. This could make it so that de-
cision making processes thought of to be fair and unbiased
could produce inaccurate and unfair decisions.

The consequences of machine learning making mistakes
when it comes to fairness are important to consider when deal-
ing with machine learning. One notable recent example is
the COMPAS computer program, which was used to assist in
sentencing defendants, which was eventually determined to
be making unfair decisions. After filtering criminal history,
COMPAS was 77% percent more likely to incorrectly flag
black defendants as high risk than it was likely to falsely flag
white defendants, and was also more likely to falsely identify
white individuals as low-risk.8

These kinds of problems require technical and legal defi-
nitions of fairness, as well as definitive ways to improve the
fairness of machine learning models. However, defining, mea-
suring, and improving fairness is a long-standing problem that
has been debated and discussed for decades, long before ma-
chine learning reached the prevalence it has today. One in-
dicator of the current state of machine learning fairness is
how fairness is determined legally. Some of the modern ways
that laws evaluate the fairness of decision making processes
are via the presence of disparate treatment and disparate im-
pact present in or resulting from a particular decision making
process.9

Disparate treatment is the direct use of sensitive attribute
data in the decision making process, while disparate impact is
the presence of negative impacts resulting from the decision
making process. Attempting to circumvent either disparate
treatment or disparate impact on their own, by methods such
as not considering the sensitive attribute to avoid disparate
treatment, or by using sensitive attributes to avoid disparate
impact, can lead to other forms of discrimination (Indiscrete
Discrimination and Reverse Discrimination being a few no-
table examples).9

A. Defining Fairness

One thing we took away from our research is that one can-
not guarantee the ability to maximize multiple conflicting def-
initions of fairness simultaneously. Because of this, those that
measure machine learning fairness need to make a choice of
how one will define the fairness of a given model prior to an-
alyzing its fairness.10

Definitions of fairness attempt to help mediate a problem
specific to their definition. There have been multiple defini-
tions of fairness proposed throughout the past several decades.

These definitions work to help individuals maximize different
categories of fairness, made to provide fairness in a specific
context . A few of these categories include individual fairness,
non-comparative fairness, subgroup parity, and correlation.10

With Aequitas, we are catering to the category of individual
fairness. Aequitas attempts to discover discriminatory input
(inputs that violate individual fairness). Individual fairness at-
tempts to make sure that, for two entries that are identical with
the exception of some sensitive attribute (or identical within a
specific input space), the fairness model will output identical
results for both entries6. For Aequitas, the precise definition
of (individual) fairness is as follows:6

Definition V.1. Let f be a classifier under test, γ be the pre-
determined discrimination threshold (e.g. chosen by the user),
I be the input domain of the model, Pi be the i-th input param-
eter of the model, P be the set of all input parameters, Pdisc
be the non-empty set of all potentially discriminatory param-
eters, I ∈ I, and Ip be the value of input parameter p in input I.
Assume I′ ∈ I such that there exists a non-empty set Q⊆ Pdisc
and for all q ∈ Q, Iq ̸= I′q and for all p ∈ P\Q, Ip = I′p. If
| f (I)− f (I′)| > γ , then I is called a discriminatory input of
the classifier f and is an instance that manifests the violation
of (individual) fairness in f .

This provides Aequitas with a method to check whether a
given model produces what it considers unfair classifications.

B. Measuring Accuracy

There are multiple metrics that can be used to measure the
performance of a machine learning fairness model. This in-
cludes fairness (exact definition subject to the model), but an-
other way that machine learning fairness can be measured is
by looking at the accuracy of the model based on classifier la-
bel assignments. The accuracy of a given model can be mea-
sured in terms of correct assignments, false positives, and / or
false negatives relative to the total number of results outputted
by the model. When working with models whose classifiers
assign a binary decision −1 or +1 (for example, whether or
not an individual is likely to succeed at Carleton College, in
order to determine whether a student should be accepted), an
incorrect assignment can either be a false positive or a false
negative (in which an entry is given the binary outcome +1
when it should have returned −1, and vice versa). These rates
can differ for different attributes.

The distributions of false positives and false negatives
within a given dataset can sometimes provide more informa-
tion about the fairness of a model than considering both as
a single measurement. While the accuracy of COMPAS was
approximately the same for different racial groups, the false
positive and false negative rates differed widely between the
racial groups.8

From a theory perspective, unless you have access to per-
fect information, you cannot make sure that all three forms of
accuracy are equally treated. Because it is so challenging for
all three factors to be treated equally, different groups and in-
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dividuals have proposed different ideas over which elements
of scoring the accuracy of fairness should be prioritized.

Aequitas may fail to locate all discriminatory inputs in the
input space; however, it does guarantee that no false positives
(non-discriminatory inputs that are incorrectly marked as be-
ing discriminatory) will be generated. This needs to be taken
into account when considering the accuracy of the model.

C. Fairness / Accuracy Trade-offs

One method to deal with the trade-off between fairness and
accuracy is via the use of fairness constraints as well as via the
use of accuracy constraints. These constraints allow a mini-
mal degree of leeway in either accuracy or fairness, as long as
the other remains at a predetermined level deemed acceptable.
One important accuracy constraint is the business necessary
clause, and one important fairness constraint is the p% rule.

The business necessity clause maximizes fairness under ac-
curacy constraints. Because corporations, academic institu-
tions, and other groups are often required to meet performance
standards when it comes to the accuracy of their decision mak-
ing processes, they are allowed to exhibit some degree of un-
fairness in order to meet these accuracy thresholds.9

While Aequitas aims to increase accuracy when possible,
it instead works more to maximize accuracy under fairness
constraints. It does this using a commonly-used fairness con-
straint present in multiple previous models: the p% rule.6

A given decision making process fails to satisfy the p% rule
if the proportion of individuals with some attribute that receive
some classification (positive or negative) is less than p% of
the proportion of individuals without the attribute that receive
the other classification. Decision making processes in viola-
tion of this p% rule are likely to be making biased decisions.
However, if a committee decides to investigate a company in
violation of this rule, said company only need to provide a
reasonable explanation for this violation as a justification if
it occurs. This rule has been occasionally altered to fit dif-
ferent kinds of models, such as working alongside a decision
boundary.9

While Aequitas states that it can deal with discriminatory
input using any p% rule, the authors of the Aequitas paper
only provided the results when using a 100% rule, by setting
their discriminatory threshold used in testing to 0.6 While this
greatly increases the fairness present in the retrained dataset,
having such a high p% rule value could potentially lead to
high levels of inaccuracy.9

D. Machine Learning Fairness Strategies Overview

Different machine learning strategies use different methods
to deal with issues of fairness. On a high level, these fall into
the following categories: preprocessing, processing, and post-
processing models.

Aequitas is a pre-processing model that discovers discrimi-
natory inputs and can retrain a model based off of the discrim-
inatory inputs discovered. Therefore, to better understand Ae-

quitas, it is relevant to first dive deeper into the purposes and
mechanics behind pre-processing, as well as how Aequitas re-
training differs from previous approaches at machine learning
fairness.

E. Preprocessing

Preprocessing assumes that unfairness stems from biased
data that fails to reflect reality. Some argue that preprocessing
is correcting historical biases. In other words, preprocessing
attempts to deal with the truth that not all data reflects the real-
ity of the world, because assumptions have been made that led
to an under-representative dataset. Preprocessing is a common
method amongst machine learning fairness models, yet differ-
ent models rely on different assumptions about how the data
being provided reflects the real world.

One model around causality is counterfactual fairness.
Counterfactual fairness assumes that if some discriminatory
attribute should not be causally linked to a given outcome in
reality, then changing said attribute will not change the out-
come in a fair model. If the data demonstrates an effect be-
tween the input and output, then the model is deemed to be
unfair. If the assumption being made reflects reality, then
counterfactual fairness is likely to identify discriminatory in-
puts. At a high level, Aequitas runs on the assumption that
the discriminatory input being discovered (in their case, gen-
der) should not have a causal effect on the results if all other
attributes are shared between two entries.6

F. Retraining

One of the things that sets Aequitas apart from other ma-
chine learning fairness models is the fact that Aequitas is ca-
pable of using found discriminatory inputs in order to retrain a
model, making it possible for the retrained model to exhibit a
higher degree of fairness.6 Aequitas uses a directed test gener-
ation strategy to assist in retraining classifiers. More informa-
tion on Aequitas retraining can be found in the "Understand-
ing Aequitas" section of this survey paper.

Many of the previous strategies in machine learning fair-
ness initially find discriminatory input based on random points
in the input space. Aequitas also finds discriminatory input
based on random points in the input space. However, unlike
previous methods, when Aequitas identifies said input, it at-
tempts to find related points in the vicinity of the said inputs
that might also be discriminatory. This deals with a common
problem other programs face: random test generation risks not
identifying discriminatory input when all the discriminatory
input is clumped in a few regions.6 Aequitas then uses the re-
sults of the directed test generation to retrain existing models
with an increasing percentage of discriminatory input added to
the training set, as long as the fairness of the model increases
and the percentage does not exceed 100%. One thing to con-
sider is that the research presented by the primary source as-
sumes the robustness property of machine learning models is
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true. More information on robustness property can be found
in Section VII of this survey paper.

G. Limitations of Machine Learning Fairness Models

Previous machine learning fairness strategies were not per-
fect, and were fraught with limitations. Some of them also
apply to Aequitas, while for others Aequitas managed to find
new strategies to work around them. One limitation faced by a
wide breadth of machine learning fairness models is that each
only worked with a narrow range of classifiers, and not all
previous models were able to eliminate both disparate impact
and disparate treatment simultaneously. Another limitation
of previous machine learning fairness strategies is that there
are often limits in the types of sensitive attributes the meth-
ods can handle. These can include only working with a sin-
gle attribute, or not being able to handle non-binary sensitive
attributes.9 The primary source believes that Aequitas could
be expanded to work on different types of sensitive attributes.
At the moment, Aequitas only works on one discriminatory
input.

H. Further Resources

This fairness in machine learning section of the survey pa-
per has provided a brief overview of some of the topics of
fairness preceding and relevant to Aequitas, but there is more
information available for further learning that did not get cov-
ered in this limited amount of space. Here are a few:

• For more information on more types of fairness that
have been proposed over the past several decades, as
well as more information about fairness and unfairness
both in and out of the field of machine learning, see B.
Hutchinson and M. Mitchell (2019).

• More information on the strengths and limitations of
previous models, as well as more information on fair-
ness constraints, can be found from Zafar M, Valera I,
Rodriguez M et al. (2015).

VI. ROBUSTNESS IN MACHINE LEARNING

As we will see when we explain Aequitas in detail, the prin-
cipal underlying assumption of the Aequitas algorithm is the
robustness of machine learning models. Without this hypoth-
esis, we cannot generate similar discriminatory inputs based
on the initial set of discriminatory inputs found on the first
part of the algorithm (see Section IX). Even though we will
give the precise and technical definition of robustness, we can
understand, for now, that robustness states that the output of a
machine learning model is not dramatically changed by small
changes to its input.

The robustness claim made by our primary source is based
on the results of Fawzi et. al (2015)11, which we describe in
this section.

Adversarial perturbations are minimal perturbations made
to the inputs of a classifier so that the classifier will switch the
estimated label of that input. The opposite of adversarial per-
turbation is random uniform noise, which refers to randomly
changing an input, in contrast to making changes to intention-
ally change the label of the input. The main result from this
paper is that there is an upper bound to classifiers’ robustness
against adversarial perturbations and random uniform noise.

The paper also claims that the adversarial instability is due
to the low flexibility of some classifiers. This refers to the
capability of expression of some model classes, for instance,
linear classifiers are less flexible than high-degree polynomial
classifiers.

A. Definitions

Now, we begin introducing the technical terms that will al-
low us to formally express the aforementioned upper bound.

Let µ be a probability measure defined on Rd , which as-
signs probabilities on the subset of points that we wish to clas-
sify. For each point x in this subset, let y be the unknown func-
tion that we want to approximate and such that y(x)∈{−1,1}.
Then µ tells you the probability that y(x) = 1 or y(x) =−1 for
any x that we wish to classify. Furthermore we assume that
these points x are in a M-ball,

B = {x ∈ Rd : ∥x∥2 < M}.

Note that,

Pµ(x ∈ B) = 1.

Now let µ1 and µ−1 be the probability distribution of points
x ∈ B such that y(x) = 1 and y(x) = −1, respectively. Fur-
thermore, suppose that f : Rd → R is a classification func-
tion where the sign of f (x) is the label that we will assign to
x ∈ Rd . Note that in the language that we had previously, f is
the hypothesis, while y is the unknown "truth of the world."

One common measure of performance for f is the risk of f ,

R( f ) = Pµ(sign( f (x)) ̸= y(x))
= p1Pµ1( f (x)< 0)+ p−1Pµ−1( f (x)≥ 0),

(27)

where p±1 = Pµ(y(x) = ±1). The non-technical way to ex-
press the risk of f is "what is the probability that we sample
from B by µ and get a point x that f will missclassify."

Given x ∈ Rd sampled with probability as determined by
the probability measure µ , we define ∆adv( f : x) as the small-
est perturbation that changes the sign of f (x). In other words,

∆adv( f : x) = min
r∈Rd
∥r∥2 with f (x) f (x+ r)≤ 0. (28)

The robustness to adversarial perturbations of f is defined
as the average ∆adv( f : x) over all x ∈ B,

ρadv( f ) = Eµ(∆adv( f : x)). (29)

Furthermore, note that this value is independent of the actual
signs of f (x) or y(x), rather it depends solely on how much
we need to perturb the inputs to change the estimated label.
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We can similarly define robustness of f to random uniform
noise. Given ε ∈ [0,1], let,

∆unif,ε(x : f ) = max
η≥0

η with Pn∼ηS( f (x) f (x+ r)≤ 0)≤ ε

(30)
where ηS is the η-Ball around x. Intuitively, this value mea-
sures the maximum radius around x for which the probability
of missclassifying a point within the ball defined is less than
ε . Similarly, the robustness is the average ∆unif,ε(x : f ) over
all x ∈ B,

ρunif,ε( f ) = Eµ(∆unif,ε( f : x)). (31)

It is important to note that there are classifiers f such that
R( f ) = 0 for which ρadv( f ) is small. In other words, the
fact that a classifier has, in particular, 0 risk on its training
set doesn’t mean that it will be robust against adversarial per-
turbations. This is akin to the problem of over-fitting, where a
classifier works very well for its training dataset, but it doesn’t
capture the concept of the problem correctly.

B. Assumption A

We say that a classifier f satisfies Assumption A if there are
real numbers τ > 0 and 0 < γ ≤ 1 such that for every x ∈ B,

dist(x,S−)≤ τ max(0, f (x))γ (32)
dist(x,S+)≤ τ max(0,− f (x))γ (33)

where

dist(x,S) = min
y
{∥x− y∥2 : y ∈ S}

and S+ = {x ∈ B : f (x)≥ 0} and S− = {x ∈ B : f (x)< 0}.
Intuitively, we say that f satisfies Assumption A if for any

x ∈ B the distance from x to S− and S+ is bounded.

C. Upper Bound

If f satisfies Assumption A then,

ρadv( f )≤ 41−γ
τ(p1Eµ1( f (x))
− p−1Eµ−1( f (x))+2∥ f∥∞R( f ))γ .

(34)

Therefore, we have found an upper bound of machine learn-
ing model’s robustness against adversarial perturbations. This
bound is done with respect to the risk as well as the differ-
ence between the expectations of the values of the classifiers
computed on the distributions µ1 and µ−1. We will not worry
about what the value of the right hand side of the inequality
is, just that the value ρadv( f ) is bounded.

This ends our survey on this topic, however there is more
about robustness of linear and quadratic classifiers in Fawzi et
al (2015). There is also a proof of equation (34) and a similar
upper bound for robustness of linear classifiers against ran-
dom uniform noise. Furthermore the paper goes on to explain
that, for the particular case of linear classifiers, the robustness
against random uniform noise is greater than the robustness
against adversarial perturbations by a factor of

√
d, where d is

the dimension of the inputs.

VII. LAW OF LARGE NUMBERS

Aequitas also relies on the Law of Large Numbers, as the
idea behind the Global search step is that repeated sampling
of the input space guarantees that at least one discriminatory
input will be found.

Thus, as a group, we decided to investigate more about this
concept, and this is what we found12.

A. Weak Law of Large Numbers

Let (X1,X2, . . .) be an independent and identically dis-
tributed sequence of random variables with finite expectation
ν . That is E(X1) = E(X2) = · · ·= ν . The sequence of sample
averages (X1,X2, . . .), where,

X i =
X1 + · · ·+Xi

i

satisfies,

lim
n→∞

P(|Xn−ν |< ε) = 1 ∀ε > 0. (35)

What this means is that there is a very high probability that
the sample mean is within an arbitrary margin of the expected
mean as the number of experiments increases.

B. Strong Law of Large Numbers

With the same notation as the Weak Law of Large Numbers,
we claim,

P
(

lim
n→∞

Xn = µ

)
= 1. (36)

This result implies if we define the sample space of all infi-
nite sequences of experiments (X1,X2, . . .), then the probabil-
ity of sampling a sequence whose sample mean converges to
µ is 1.

We omit the proof to these theorems as they are out of
the scope of this paper. However, the importance of this re-
sult is as follows: say that we have a population of interest
with unknown mean µ . If we sample n elements from this
population at random and measure their values in a sequence
X1,X2, . . . ,Xn then the mean of this sample, Xn, will almost
certainly be arbitrarily close to µ as n increases.

VIII. INTERLUDE

This concludes the exploratory part of our Integrative Exer-
cise. In the following section we study our primary resource,
Udeshi et al., 20176. Our goal with this exploration was to
learn about the different, and for the most part unrelated, top-
ics on which this paper relies. This is helpful because Udeshi
et el. describes an algorithm called Aequitas, whose goal is to
improve the fairness of machine learning models. Thus, the
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topics of machine learning and machine learning fairness are
relevant in our discussion. As we will also see, machine learn-
ing robustness and the law of large numbers, as introduced in
the sections above, serve as the mathematical background for
Aequitas.

IX. UNDERSTANDING AEQUITAS

In this section we provide a discussion of Aequitas as pre-
sented in our primary source, "Automated Directed Fairness
Testing." (Udeshi et al., 2017)6

As mentioned previously, there is no consensus within the
field of machine learning on how to solve the issue of bias in
models, especially since there can be conflicting definitions
and forces pulling potential solutions. Thus, we must state
which kind of fairness Aequitas will work with. Firstly, Ae-
quitas defines fairness as individual fairness, which we will
explain in detail below. At a high level though, individual fair-
ness is the notion that we should classify people with similar
characteristics but different sensitive features (e.g. race, gen-
der, etc.) equally. Aequitas also believes that model bias stems
from the preprocessing part of a learning algorithm, In other
words, in the data collection. Aequitas also believes in coun-
terfactual fairness, which means that we would like models
to treat people belonging to protected categories better than
what may happen in reality. Lastly, Aequitas works with a
fairness constraint, it tries to maximize accuracy within a pre-
determined numerical fairness threshold.

Thus, the goals of Aequitas, given a potentially biased
machine learning model, is to increase it individual fairness
within the specified numerical threshold. The specific inputs
of Aequitas are the model itself, its input features, and the
dataset that was used to train it. The preprocessing assump-
tion tells us that bias may underlie the training dataset as a
reflection of the bias of the real world and therefore the model
that was trained based on it may have learned those biases.

In particular, Aequitas will systematically explore the in-
put space and find inputs that induce discrimination. Aequitas
combines the found inputs and the original training dataset to
automatically retrain the model, in the hopes of improving its
fairness.

The novelty of this approach is that the retraining dataset
is generated by a directed approach, in contrast to randomly
selecting inputs as done by other state-of-the-art fairness algo-
rithms. Furthermore, the directed algorithm relies on the con-
cept of robustness of machine learning models to find discrim-
inatory inputs for the retraining dataset. Robustness states that
small changes to the input of a classifier will not change its
estimated label. Even though Fawzi et al. (2015) found that
there is an upper bound to robustness against adversarial in-
puts, these inputs are found only in small regions of the input
space. Aequitas’ directed approach will eventually avoid these
regions if it fails to find discriminatory inputs.

A. Outline of the Algorithm

First, we start with a motivating example. Suppose that we
count with a machine learning model that takes in the char-
acteristics of a person, such as their education and general
qualifications as well as their gender and race, and outputs a
hiring recommendation. If we have two inputs to this model
which have the same qualifications and requirements relevant
for a job, we would like the model to recommend hiring both.
However, if these inputs differ by a sensitive feature, let’s say
gender, and are classified differently, then the model is biased
against gender. Then, we say the the inputs are discriminatory
and the model violates individual fairness.

Note that in the above scenario, any difference of model
classification is considered discriminatory since we only con-
sider two options: hiring or not hiring. Sometimes we will
consider other kinds of numerical outputs and in those cases
we use a fairness threshold: if the difference between the out-
puts is within the threshold, then we do not consider the inputs
discriminatory.

Henceforth, we describe an algorithm, Aequitas, to sys-
tematically find discriminatory inputs to retrain our machine
learning model and improve individual fairness. Overall, Ae-
quitas has three big steps:

a. Global search. In this step, Aequitas uniformly sam-
ples the input space and saves any discriminatory inputs that it
finds. The authors of the paper claim that if there are any dis-
criminatory inputs, then the algorithm is almost guaranteed to
find at least one. Note that this step is repeated several times.
Moreover, an input I is considered discriminated against if
there is an input I′ that is the same as I except for the value of
a protected category such as gender or race. If | f (I)− f (I′)|
is larger than a predefined fairness threshold, then I is consid-
ered a discriminatory input.

b. Local search. Given the set of discriminatory inputs
from the previous step, we claim, by robustness, that in the
neighborhood of each individual discriminatory input there
will be more discriminatory inputs.

Below is an overview of the local search step in limited de-
tail. The notation below will be used throughout this section.

Let I represent the input domain. That is, I is the set of
all possible inputs to the model. Let P1, . . . ,Pn denote each
the value of each parameter of a particular input I ∈ I. Let Ik
be the set of all values that the parameter Pk can take. Then
note that I= I1×·· ·× In as I is the set of all possible inputs,
and thus it is also the Cartesian product of all of the possible
values of each individual parameter. An input parameter p
from P1, . . . ,Pn can potentially be discriminatory if the classi-
fier should not be biased against specific values in Ip. For ex-
ample p could be gender in a creditworthiness classifier—we
do not want classifiers predicting the income of a person based
on gender.

Let I ∈ I, let Ik be the value of the parameter Pk in I, let I(d)

be a discriminatory input that we found on the previous part of
the algorithm, and let Pdisc ⊆

⋃n
i=1 Pi be the set of parameters

that we hypothesize might induce discrimination.
There are three flavors of Aequitas’ local search:
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1. Aequitas randomly chooses a parameter

p ∈
n⋃

i=1

Pi\Pdisc.

Then a small perturbation δ usually chosen at random
from {1,−1} is added to I(d)p .

2. The parameter p is still chosen uniformly at random, but
given a perturbation δ of I(d)p that consistently yields
discriminatory inputs, then δ is chosen with higher
probability.

3. We augment the previous approach by also picking pa-
rameters p that consistently yield discriminatory inputs
with higher probability.

After we find the perturbed input, we add it to the retraining
dataset if it is a discriminatory input.

The approach described works because of robustness (see
Section VI). That is, we expect that slightly perturbed inputs
in the neighborhood of initially found discriminatory inputs
will also induce discrimination.

Moreover, by the law of large numbers, the average amount
discriminatory inputs found after a large number of iterations
will approximate the true ratio of discriminatory inputs in I.

c. Retraining. We add a portion of the discriminatory
inputs found to the original dataset and train a new model with
it. We only add a portion of the inputs because these inputs are
artificially generated so they do not "represent" reality. Since
this new dataset could skew the behavior of the model, we try
to add different amounts of discriminatory inputs and gauge
the sensitivity of the model. Note that this reflects Counter-
factual fairness: we add these discriminatory inputs, which
are generated and not "factual," to the original dataset to im-
prove the fairness of a model.

In summary, Aequitas begin by sampling uniformly at ran-
dom from the input space of the model in question. Whenever
Aequitas finds a discriminatory input, it adds it to the retrain-
ing set. By the Law of Large Numbers (see Section VII) there
is a high probability that we will find discriminatory inputs
if we sample enough times. We look at the neighborhood of
each input in previous step to find more discriminatory inputs.
We do this by perturbing the inputs, where the perturbations
are probabilistic and learn from previous iterations. After this
is done, we use the discriminatory inputs found to retrain the
model.

B. Aequitas, formal declaration

Now we proceed with the formal declaration of the algo-
rithm. The discussion in the previous discussion is detailed
enough for a superficial understanding of the algorithm. Here
we concern ourselves with the mathematical definitions and
justifications of Aequitas. Note that we use the notation that
we used in the previous section.

We start by giving more notation and definitions that we
will need.

Let P =
⋃n

i=1 Pi be the set of parameters of inputs in I.

Definition IX.1 (Individual Fairness, Discriminatory Input).
Let f be a classifier under test, and let γ be a user defined
discrimination threshold. Let I ∈ I. Suppose there is I′ ∈ I
such that there is a non-empty subset Q ⊆ Pdisc and such that
for every q ∈ Q, Iq ̸= I′q and for all p ∈ P\Q, Iq = I′q. If
| f (I)− f (I′)| > γ then I is a discriminatory input of the clas-
sifier f and reflects the violation of Individual Fairness in the
classifier f .

A perturbation g is a function g : I× (P\Pdisc)× Γ → I
where Γ = {+1,−1} defines the directions in which we can
perturb an I ∈ I. Then g(I, p,δ ) is the input I′ ∈ I such that
I′p = Ip + δ and such that for all q ∈ P\{p} we have that
I′q = Iq.

Now we formally define Aequitas.
a. Global search. (See Algorithm 1) As mentioned be-

fore, we want to take a subset of discriminatory inputs from I
to drive our local search algorithm. To this end, we select an
input I ∈ I at random, and generate a set of inputs I(d) from
I that cover all possible values of Pdisc. Finally, from I(d) we
find discriminatory inputs as defined previously.

Algorithm 1: Global Search
1 procedure GLOBAL_EXP(P, Pdisc)
2 disc_inputs← /0
3 Let P′ = P\Pdisc

// N is the number of trials
4 foreach i in (0,N) do
5 Select I ∈ I at random

// I(d) extends I with all possible values
of Pdisc

6 I(d)←{I′|∀p ∈ P′, Ip = I′p}
7 if ∃I′, I′′ ∈ I(d), | f (I′)− f (I′′)|> γ then
8 disc_inputs← disc_inputs ∪{I}
9 end

10 end
11 return disc_inputs
12 end

b. Local search. (See Algorithm 2) Let disc_inputs
be the set of discriminatory inputs found on the previous step.
Now we want to find discriminatory inputs in the neighbor-
hood of inputs in disc_inputs. Remember that we can do
this because of the robustness of machine learning models.

Thus, Aequitas perturbs an input I ∈ disc_inputs by
changing the value of Ip by δ ∈ {+1,−1} where p ∈ P\Pdisc.
Note that by changing Ip, I is now a different input, and it will
be further perturbed in the inner loop of Algorithm 2.

Now, the perturbations on the inputs are chosen at random.
Perturbations are defined by picking a feature to perturb and
a direction or value by which to perturb so we randomly pick
both values separately. In this regard, let σpr be the array such
that σpr[p] is the probability of picking p for any p ∈ P\Pdisc.
The probability of picking a value of perturbation will depend
on which feature we choose to perturb, so let σν be the ar-
ray such that σν [p] is the chance of picking a perturbing the
feature denoted by p by δ =−1 for any p ∈ P\Pdisc.
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Algorithm 2: Local Search
1 procedure LOCAL_EXP(disc_inputs, P, Pdisc, ∆υ , ∆pr)
2 Test← /0
3 Let P′ = P\Pdisc

4 Let σpr[p] = 1
|P′| for all p ∈ P′

5 Let συ [p] = 0.5 for all p ∈ P′

6 foreach I ∈ disc_inputs do
// N is the number of trials

7 foreach i in (0,N) do
8 Select p ∈ P′ with probability σpr[p]
9 Select δ =−1 with probability συ [p]

// I is modified as a side effect of
modifying Ip

10 Ip← Ip +δ

// I(d) extends I with all possible
values of Pdisc

11 I(d)←{I′|∀p ∈ P′, Ip = I′p}
12 if ∃I′, I′′ ∈ I(d), | f (I′)− f (I′′)|> γ then

// Add perturbed input I
13 Test← Test ∪{I}
14 end
15 end
16 update_prob(I, p,Test,δ ,∆υ ,∆pr)

17 end
18 return Test
19 end

As noted before, the parameter p is chosen with probability

σpr[p] where initially σpr[p] =
1

|P\Pdisc|
. Once p is chosen, we

need to choose δ ∈ {+1,−1}where the probability of δ =+1
is συ [p] and δ =−1 is 1−συ [p]. Initially, συ [p] = 0.5 for all
p ∈ P\Pdisc.

There are three kinds of Aequitas based on how we update
σpr[p] and συ [p].

Aequitas Random. This is when σpr[p] and συ [p] are not
updated. This is equivalent to sampling inputs uniformly at
random from the neighborhood of an input I ∈ disc_inputs.

Algorithm 3: Aequitas semi-directed update
probability

1 procedure UPDATE_PROB(I, p, Test, δ , ∆υ , ∆pr)
2 if (I ∈ Test∧δ =−1)∨ (I ̸∈ Test∧δ =+1) then
3 συ [p]←min(συ [p]+∆υ ,1)
4 end
5 if (I ̸∈ Test∧δ =−1)∨ (I ∈ Test∧δ =+1) then
6 συ [p]←max(συ [p]−∆υ ,0)
7 end
8 end

Aequitas semi-directed. (See Algorithm 3) In this case,
we drive the test generated by updating συ . Note that p is still
chosen uniformly at random. For each p ∈ P\Pdisc we initial-
ize the probability of the perturbation value δ = −1 as συ [p]
and δ =+1 as 1−συ [p]. Based on whether a particular δ led
to a discriminatory input, συ [p] is increased or decreased by a
user determined value ∆υ .

Aequitas fully-directed. (See Algorithm 4) This approach
extends Aequitas semi-directed by systematically updating

σpr[p]. For any p ∈ P\Pdisc we initialize σpr[p] =
1

|P\Pdisc|
.

If the perturbation of p by δ (which is chosen as noted in
Aequitas semi-directed) leads to a discriminatory input then
we add a user determined value ∆pr to σpr[p]. To reflect this

change in probability we normalize σpr[p′] =
σpr[p′]

∑x∈P\Pdisc
σpr[x]

for every p′ ∈ P\Pdisc. We do this because we still need the
probabilities to add up to 1 even after updating σpr[p].

Algorithm 4: Aequitas fully-directed update
probability

1 procedure UPDATE_PROB(I, p, Test, δ , ∆υ , ∆pr)
2 if (I ∈ Test∧δ =−1)∨ (I ̸∈ Test∧δ =+1) then
3 συ [p]←min(συ [p]+∆υ ,1)
4 end
5 if (I ̸∈ Test∧δ =−1)∨ (I ∈ Test∧δ =+1) then
6 συ [p]←max(συ [p]−∆υ ,0)
7 end
8 if I ∈ Test then
9 σpr[p]← σpr[p]+∆pr

10 σpr[q]←
σpr[q]

∑x∈P\Pdisc
σpr[x]

for all q ∈ P\Pdisc

11 end
12 end

c. Estimation using the Law of Large Numbers. Using
Aequitas we can estimate the percentage of discriminatory in-
puts in I. Let X1,X2, . . .XK be a sequence of random vari-
ables, each counting the proportion of discriminatory inputs
in a random sample of m inputs from the input space. Note
that E[Xi] = m∗ for all 1 ≤ i ≤ K, where m∗ is the true pro-
portion of discriminatory inputs in the input space. Then
by the law of large numbers, the average of the samples,
X = K−1

∑
K
i=1 Xi, will tend to be close to the expected value

as K increases. Hence, X → m∗ as K → ∞. Whence, we
call LLN_Fairness_Estimation the function that takes in a
model and samples its input space uniformly at random mul-
tiple times to find discriminatory inputs. If we do this enough
times, we will get a "good" estimation of the true ratio of dis-
criminatory inputs in the input space. For a usage of this func-
tion, see Algorithm 5, line 14.

d. Automatic retraining of the model. (See Algorithm 5)
Let Test be the set of generated test inputs from the local
search step. We use Test—whose elements show the vio-
lation of the desired properties that we want our model to
have—to retrain our machine learning model. The strategy we
use is to add portions of Test to the original training dataset.
This is because adding all of the elements in Test to the train-
ing dataset may skew the model, as the elements in Test may
be an over represented region in the input space.

Now we describe how we select portions of Test to add
to the training dataset. Suppose that M = |Test|. Then
for i ∈ [2,7], we choose pi randomly in a range between

[2i−2,2i−1] and select
M ∗ pi

100
elements from Test at ran-
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dom. Intuitively, pi represents the percentage of elements
from Test that we will select. After all of the iterations,
we keep the retrained model that had the least percentage
of discriminatory inputs in its input space, as computed by
LLN_Fairness_Estimation.

The intuition behind picking pi from an exponentially in-
creasing range [2i−2,2i−1] is to maintain our level of fairness
relatively high while also making the execution of the program
fast.

Algorithm 5: Retraining
1 procedure Retraining( f , Test, training_data)
2 N← ∞

3 fcur← f
4 foreach i in [2,7] do
5 pi← a real number between [2i−2,2i−1]
6 if pi > 100 then
7 Exit the loop
8 end
9 k← len(training_data)

10 naddn← pi·k
100

11 T Daddn← naddn randomly selected inputs from
training_data

12 T Dnew← T Daddn∪training_data
13 fnew← model trained using T Dnew

// LLN_Fairness_Estimation estimates the
proportion of discriminatory inputs
using the law of large numbers

14 f aircur← LLN_Fairness_Estimation( fcur)
15 f airnew← LLN_Fairness_Estimation( fnew)
16 if f aircur > f airnew then
17 fcur← fnew
18 else
19 Exit the loop
20 end
21 end
22 return fcur
23 end

C. Conclusion

We have described Aequitas in its entirety and given a brief
survey on the theoretical topics on which it relies. In particu-
lar, we discussed the issue that arises when one wants to define
fairness and how to solve that specific kind of fairness. Each
one of these solutions is different and at times even contra-
dictory. In this way, Aequitas is opinionated: it attempts to
improve a model’s Individual Fairness and it assumes that the
bias that happens comes from the training dataset itself.

We can see how these two forces, Preprocessing and Indi-
vidual Fairness, play a role in the statement of Aequitas: we
define discriminatory inputs in terms of Individual Fairness
and retrain the model by adding a set of them to the training
dataset.

Within this realm of machine learning fairness algorithms,
Aequitas is special because the retraining dataset, the one con-
taining all of the discriminatory inputs, is not generated com-

pletely at random. A portion of the dataset, specifically the
one that is found in the Local Search step, is found in a di-
rected way: Aequitas looks for discriminatory inputs in the
neighborhood of other discriminatory inputs.

Of course, there are limitations to Aequitas. In Udeshi et.
al. there is no elaboration in the retraining techniques that
Aequitas uses and they justify this by claiming that the essence
of Aequitas is automated training dataset generation. On the
other hand, the formal statement of Aequitas in the primary
source assumes integer-valued features in the model’s inputs,
whereas the discussion on this article assumed that the inputs
could be continuous.

Another shortcoming to Aequitas is its dependence on ro-
bustness. Recall that the Local Search step of the algorithm
assumes that the neighborhood of discriminatory inputs will
behave similarly, i.e. we will be able to find more discrimina-
tory inputs. We found the citations from Udeshi et. al. on this
topic not satisfactory and we question whether the notion of
robustness is justified correctly.

All in all, fairness remains an important topic in machine
learning as this technologies become more and more ubiqui-
tous in our daily lives. We hope that Aequitas can be applied
in real world scenarios and moreover that these conversations
around fairness stay relevant.

Lastly, Udeshi et. al. provided a Python proof-of-concept
implementation of their algorithm. The next section, which
we have decided to include sort of as an appendix, explores
the code in some detail.
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Appendix A: Understanding Aequitas Code

This section will highlight some important details of the
Aequitas implementation. We begin by introducing the mod-
ules that were used to run Aequitas, after which we look at the
core snippets of the code, comparing it to the intentions of the
original algorithm.

1. Modules Used

sklearn

Sklearn (Scikit Learn) module contains several machine
learning algorithms that can be used to train models, including
SVM, Ensemble, Decision Tree, and Neural Networks.

numpy

Numpy (Numerical Python) is a module that is frequently
used in machine learning to manipulate the input and output
and perform matrix operations during training. In Aequitas,
Numpy plays an integral part in evaluating whether an arbi-
trary input is discriminatory.

scipy

Scipy (Scientific Python) is also used frequently during ma-
chine learning training. In the Aequitas code, scipy’s "basin
hopping" algorithm is used during local perturbation to dis-
cover more discriminatory inputs.

2. Structure of the Code

Aequitas parameters are set up using a configuration file.
Parameters defined in the configuration file persist throughout
the Aequitas code.

params = 13

sensitive_param = 9 # Starts at 1.

input_bounds = []
input_bounds.append([1, 9])
input_bounds.append([0, 7])
...
input_bounds.append([0, 39])

classifier_name =
’Decision_tree_standard_unfair.pkl’

threshold = 0

perturbation_unit = 1

retraining_inputs = ’Retrain_Example_File.txt’

Listing 1. config.py

params refers to the number of parameters in the dataset.
sensitive_param is the index (based on 1) of the sensitive
text (i.e. gender). input_bounds are the domain, or the
value range of each of the parameters. classifier_name
is the name of the file containing the sklearn-trained classifier
to test fairness of. threshold is the discrimination thresh-
old. perturbation_unit is the unit by which Aequitas per-
turbs the input in the local search. retraining_inputs is
the name of the dataset used for the retraining. This dataset is
the result of Aequitas algorithm execution.

3. Code Snippets

Now we look at the code snippets that are integral to each
part of the Aequitas algorithm.

a. Training a Model

In the initial training of a model, X and Y , which are input
features and prediction, respectively, are extracted from the
input dataset, and are used to train a model such as a Decision
Tree Classifier.

X = np.array(X)
Y = np.array(Y)
model = DecisionTreeClassifier()
model.fit(X, Y)

Listing 2. Generate_Sklearn_Classifier.py

b. Evaluating Fairness

Throughout Aequitas, evaluating whether a given input is
’biased’ plays an integral role in determining 1) how fair the
model is, and 2) what input gets added to the new retraining
dataset. The series of code below illustrates this procedure.

def evaluate_input(inp):
inp0 = [int(i) for i in inp]
inp1 = [int(i) for i in inp]

Listing 3. Sklearn_Estimation.py

In the original code, it is hard coded that the sensitive fea-
ture (i.e. gender) must be binary, meaning only two values are
possible. This is why the original input inp is cloned twice. If
the sensitive feature is non-binary, the number of clones will
match the number of possible values in the sensitive feature’s
domain.

Once there are two clones, only the value of the sensitive
feature is changed so that each one has one of the two possible
values, in this case 0 and 1.

inp0[sensitive_param - 1] = 0
inp1[sensitive_param - 1] = 1
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Then, the model predicts the outcomes (y) of the two
clones, and if the outcomes differ more than the threshold,
we deem inp discriminatory.

out0 = model.predict(inp0)
out1 = model.predict(inp1)
return abs(out0 - out1) > threshold

c. Discriminatory Input Search

The aforementioned algorithm is used both in the global
search and local search to detect discriminatory inputs. Ae-
quitas first performs global search, where discriminatory in-
puts are found by sampling uniformly at random from the
input space. Scipy’s basinhopping, an algorithm similar to
simulated annealing, is the algorithm that is used for this pur-
pose. Simulated Annealing is an algorithm that takes into ac-
count both optimized direction of search and randomness to
reach a goal (in this case, finding more discriminatory inputs).
When global search finishes, local search uses basinhopping
again, to find more discriminatory inputs in the neighborhood
of these aforementioned inputs.

basinhopping(evaluate_global, initial_input,
stepsize=1.0, take_step=global_discovery,
minimizer_kwargs=minimizer,

niter=global_iteration_limit)

Listing 4. Global Discovery

The parameter take_step takes in a function that performs
the random displacement of features within the input space. In
our case, that function is Global_Discovery, which given
an input, randomly modifies the values of each of the pa-
rameters within the respective ranges, returning a new in-
put sourced from the input space. This random sampling
characterizes global search. When this new input is created,
whether or not it is a discriminatory put is determined us-
ing the evaluate_global function, which employs a similar
mechanism of evaluating an input as one that was introduced
earlier. The only difference is that this time the discriminatory
inputs are saved in an array.

For local search, there are three approaches. The differ-
ence between these approaches is whether the probability of
choosing the perturbation direction (+1, -1) and/or choosing a
feature to perturb are modified throughout the algorithm. In
Aequitas Random, the feature to perturb and perturbation di-
rection are chosen uniformly at random and not in a directed
way. It represents a random exploration of the neighborhood
of discriminatory inputs discovered through global search.

feature = random.randint(0, 12)
direction = [-1, +1]
# perturbation
x[feature] = x[feature] + random.choice(direction)

Listing 5. Local Discovery-Aequitas Random

In Aequitas Semi-Directed, the feature to perturb is still
chosen randomly, but the direction of perturbation is now de-
termined by the direction_probability for that specific fea-
ture.

init_prob = 0.5
direction_probability = [init_prob] * params

Direction of -1 is chosen with the probability of
direction_probability[feature] and direc-
tion of +1 is chosen with the probability of 1 -
direction_probability[feature]. At first, the
direction_probability of each input feature is the same, and
choice of direction is random, as it was in Aequitas Random.

direction_choice = np.random.choice(direction,
p=[direction_probability[feature], (1 -
direction_probability[feature])])

x[feature] = x[feature] + (direction_choice *
perturbation_unit)

However, in Aequitas Semi-Directed, the perturbed
input is evaluated, and based on its "biasedness",
direction_probability is adjusted.

ei = evaluate_input(x)

if (ei and direction_choice == -1) or (not ei and
direction_choice == 1):
direction_probability[feature] = min(

direction_probability[feature] +
(direction_probability_change_size *
perturbation_unit), 1)

elif (not ei and direction_choice == -1) or (ei and
direction_choice == 1):
direction_probability[feature] = max(

direction_probability[feature] -
(direction_probability_change_size *
perturbation_unit), 0)

Put simply, if the perturbed input is discriminatory,
the direction_probability of the direction_choice
will be rewarded because by robustness, this must mean
that neighboring inputs in this direction will also likely
be discriminatory. In other words, the algorithm in-
creases direction_probability[direction_choice]
to incentivize perturbing in this direction. Con-
versely, if the perturbed input is not discriminatory,
direction_probability[direction_choice] will
be decreased to disincentivize perturbation in this direction.

In Aequitas Fully-Directed, both the direction of perturba-
tion and the feature to perturb are chosen with differing prob-
abilities. The algorithm learns which features are more asso-
ciated (correlated) with the sensitive feature, (i.e. frequency
of parental leave and gender) and attempts to find discrimi-
natory inputs more efficiently by adjusting those parameters
with greater probability.

First, direction_probability and param_probability are
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initialized to be equal across all features.

init_prob = 0.5
direction_probability = [init_prob] * params
direction_probability_change_size = 0.001
param_probability = [1.0/params] * params
param_probability_change_size = 0.001

The very first input selection is random, as the probabili-
ties are the same. However, after the initial input is evalu-
ated, both direction_probability and param_probability are
adjusted accordingly, in a manner similar to Aequitas Semi-
Directed, in that the algorithm incentivizes the selection of
feature and direction that yields a discriminatory input. For
brevity I only include how param_probability is adjusted,
since the adjustment to direction_probability have been dis-
cussed previously.

x[param_choice] = x[param_choice] +
(direction_choice * perturbation_unit)

ei = evaluate_input(x) #True if biased, False
otherwise

if ei:
param_probability[param_choice] =

param_probability[param_choice] +
param_probability_change_size

normalise_probability()
else:

param_probability[param_choice] =
max(param_probability[param_choice] -
param_probability_change_size, 0)

normalise_probability()

d. Retraining

Instead of naiively adding all the discriminatory inputs into
the training set which might result in a skewed representa-
tion of the overall data, Aequitas chooses only a subset of the
generated inputs to add at each iteration, checking if training
with the additional inputs made fairness better or worse. If the
newly trained model has better fairness, keep adding more in-
puts and see if fairness can be further improved. If the newly
trained model yields worse fairness, return the current model
without updating.

The additive percentage of the generated inputs (how much
of it we add) is chosen randomly between

[2i,2i+1]

where i is the 0-based index of iteration.

additive_percentage = random.uniform(pow(2, i),
pow(2, i + 1))

num_inputs_for_retrain = int((additive_percentage *
len(X))/100)

This means, that the more iteration you go through of this
process, more of the remaining generated inputs we add to
the training set. Of course, if the percentage becomes greater
than a 100, we exit. The code below illustrates the retraining
procedure.

After the additive percentage has been decided, Aequitas
sources randomly from the retraining dataset and retrains.

retrained_model = retrain(X_original, Y_original,
np.array(X_additional), np.array(Y_additional)

It is important to learn about the code implementations of
Aequitas not only to appreciate the intricacies of realizing the
algorithm but also to detect where it might deviate from the
original algorithm. For example, the original algorithm en-
ables non-binary sensitive features to be processed, but the
code implementation was limited to binary sensitive features.
From this understanding, we were able to figure out how we
might improve the code to stay truer to the original intentions
of the algorithm.
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I. INTRODUCTION

This report will give a summary of the set of experiments
we conducted on Aequitas using various datasets. The pur-
pose of the experimentation was to 1) get familiar with the
Aequitas code and 2) to test the limits of Aequitas (by per-
haps attempting to break the code) and 3) to subsequently spot
possible areas of improvement.

II. EXPERIMENTATION WITH EMPLOYEE DATASET

A. Objective

The purpose of this experimentation was to successfully run
Aequitas on an arbitrary data set. The employee data set was
sourced from Kaggle1 and was chosen because it had a col-
umn for ’gender’ which is the only type of sensitive feature
that Aequitas can currently assess. In the process of making
Aequitas work I refactored the codebase and made it general-
izable to any type of data set given in a csv format.

B. Methods

Prior to testing, the codebase was modified so that only
the config.py had to be modified in order to make Aequitas
work for a particular data set.

The employee data set had 9 columns: education, year of
joining the company, city, payment tier, age, gender, ever
benched, experience in current domain, and whether or not the
employee left the company in less than two years. The column
to be predicted was whether or not the employee would leave
the company in less than two years. The data set had 4654
data points.

The data set was preprocessed to numerically encode cate-
gorical values and to denote ’yes’ and ’no’ binaries with ’1’,
’-1’ instead of ’1’, ’0’. This step was important, for discrimi-
natory input evaluation depended on the absolute value of the
difference between outputs being either equal to 0 or greater.

After training a ’DecisionTreeClassifier’ on the prepro-
cessed dataset, the resulting model was subjected to Ae-
quitas Random, Aequitas Semi-Directed, and Aequitas Fully-
Directed search in order to find discriminatory inputs.

After every search, the original model was retrained with
the collected discriminatory inputs to see if the model’s fair-
ness could be improved.

C. Results

Below are the results of the searches.

• With Aequitas Random, percentage of discriminatory
inputs found of all tested inputs was 36%. The num-
ber of discriminatory inputs it found were 20643.

• With Aequitas Semi-Directed, percentage of discrimi-
natory inputs found of all tested inputs was 49%. The
number of discriminatory inputs found were 8579.

• With Aequitas Fully-Directed, percentage of discrimi-
natory inputs found of all tested inputs was 42%. The
number of discriminatory inputs found were 3414.

Below are the results of retraining the original model with
the discriminatory inputs collected from each of the aforemen-
tioned Aequitas search strategies.

Figure 1. Retraining with Uniformly(Randomly) Derived
Discriminatory Inputs

Figure 2. Retraining with Semi-Directed Derived Discrim-
inatory Inputs
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Figure 3. Retraining with Fully-Directed Derived Discrim-
inatory Inputs

D. Discussion

The difference between the three Aequitas search strategies
is not so much the raw number of discriminatory inputs gath-
ered as it is the efficiency of collection. Random search, al-
though in raw numbers found the most discriminatory inputs,
is difficult to justify, for 20643 is nearly five times the size of
the original data set. This number, however, is still only 36%
of the entire tested inputs, which means the total number of
inputs that were tested during the search was far greater than
reasonable. In the end, Aequitas Random is highly inefficient
compared to the other two methods which are more directed.
For example, Aequitas Fully-Directed found the least number
of training inputs, but in terms of efficiency of data gather-
ing, it reigned superior over the other two because it tried the
fewest number of inputs and yet yielded a high percentage of
the desired inputs.

Additionally, the different search strategies did not yield
different ’quality’ of retraining inputs. That is, a more di-
rected Aequitas search did not necessarily yield inputs that
would improve the model better than ones that were randomly
generated. As seen in Figure 1 through Figure 3, there seems
to be no significant correlation between fairness improvement
and search strategy. This is likely because the only difference
between the three, as mentioned before, is the efficiency with
which the inputs are found, not the quality of the inputs.

One thing to note is that Aequitas, on average, took 7-13
minutes to run on a data set of size 4000, which is undesirable
if our goal is to make this a scalable web application. We can
improve the overall performance by parallelizing the local
search process using a multiprocessing module.

III. EXPERIMENTATION WITH BANKNOTE
AUTHENTICATION DATASET AND EXPERIMENTATION
WITH HABERMAN’S SURVIVAL DATA

A. Objective

The purpose of this experimentation was multi-fold. First,
this experiment was performed to check whether Aequitas was

able to run when provided a non-gender attribute as a sensi-
tive attribute. Second, we wanted to check whether Aequitas
would identify discriminatory input in a data set where the
output should be reliant on the sensitive attribute, and if Ae-
quitas would increase model fairness by retraining the dataset
if this was the case.

The Banknote Authentication2 and Haberman Survival3

data sets were sourced from the UC Irvine Machine Learn-
ing Repository. The Banknote Authentication data set was
chosen because of non-integer parameter values, as well as its
apparent lack of attributes that could be considered unfairly
discriminatory. The Haberman Survival data set was chosen
for its use of integer parameter values, while also appearing
to lack attributes that could be considered unfairly discrimi-
natory.

B. Methods

The banknote authentication data set had 5 columns: vari-
ance of Wavelet Transformed image, skewness of Wavelet
Transformed image, curtosis of Wavelet Transformed image,
entropy of image, and whether or not the banknote present in
the image was genuine or forged. The column to be predicted
was whether or not the banknote in the image was forged. This
data set had 1372 data points.

The Haberman survival data set had 4 columns: the age of
the patient at time of operation, the the year of the patient’s
operation (with the century excluded), the number of positive
axillary nodes detected, and whether or not the patient sur-
vived 5 years or longer (survival status). The column to be
predicted was the survival status. This dataset had 306 data
points.

Both data sets were preprocessed in order to numerically
encode categorical values and to denote ’yes’ and ’no’ bi-
naries with ’1’, ’-1’ instead of ’1’, ’0’ (in the case of the
banknote authentication dataset) or ’1’, ’2’ (in the case of
the Haberman survival dataset). Without this step, Aequitas
would not be able to treat that parameter as binary.

After training a ’DecisionTreeClassifier’ on the prepro-
cessed dataset, the resulting model was subjected to Ae-
quitas Random, Aequitas Semi-Directed, and Aequitas Fully-
Directed search in order to find discriminatory inputs.

C. Results

This result sections will be split into two sections: one
discussing the results of our experimentation on the banknote
authentication data set, and another discussing the results of
our experimentation on the Haberman survival data set.

Banknote Dataset Results
Below are the results of the searches in the banknote
authentication dataset.

• With Aequitas Random, percentage of discriminatory
inputs found of all tested inputs was 0%. The number of
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discriminatory inputs it found was 0, out of 1001 total
inputs.

• With Aequitas Semi-Directed, percentage of discrimi-
natory inputs found of all tested inputs was 0%. The
number of discriminatory inputs found was 0, out of
1001 total inputs.

• With Aequitas Fully-Directed, percentage of discrimi-
natory inputs found of all tested inputs was 0%. The
number of discriminatory inputs found was 0, out of
1001 total inputs.

Because Aequitas did not produce any discriminatory input
for this dataset, we were unable to retrain the original model
with new data.

Haberman Survival Dataset
Below are the results of the searches in the Haberman survival
dataset.

• With Aequitas Random, percentage of discriminatory
inputs found of all tested inputs was 32.14%. The num-
ber of discriminatory inputs it found was 189, out of a
total 588 total inputs.

• With Aequitas Semi-Directed, percentage of discrimi-
natory inputs found of all tested inputs was 33.21%.
The number of discriminatory inputs found was 186,
out of 560 total inputs.

• With Aequitas Fully-Directed, percentage of discrim-
inatory inputs found of all tested inputs was 32.02%.
The number of discriminatory inputs found was 187,
out of 584 total inputs

Below are the results of retraining the original model with
the discriminatory inputs collected from each of the aforemen-
tioned Aequitas search strategies on the Haberman survival
dataset.

Figure 4. Retraining with Uniformly(Randomly) Derived
Discriminatory Inputs

Figure 5. Retraining with Semi-Directed Derived Discrim-
inatory Inputs

Figure 6. Retraining with Fully-Directed Derived Discrim-
inatory Inputs

D. Discussion

Banknote Authentication Dataset

The three Aequitas search strategies failed to identify
any discriminatory inputs from the banknote authentication
data set.

One possible explanation for why running Aequitas on
the banknote authentication data set did not identify any dis-
criminatory inputs could be the fact that every column except
for the binary classification column used non-integer real
numbers, including the parameter we chose as the sensitive
attribute. Our python code that automatically encoded the
data converted floats into distinct integers as a side effect.
This could have prevented similar values in decimal form
from being identified as close in that new integer form.
More experimentation is needed to see if this is the cause
for the lack of discriminatory input being identified in this
experiment.

Haberman Survival Dataset

The three Aequitas search strategies did not differ greatly
in the amount of discriminatory input identified, ranging be-
tween 32% and 33%. The running time did not differ greatly
between the three search strategies, since they each gathered
the same number of inputs, ±5%.
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Despite the high percentage of discriminatory inputs found,
out of the three different search strategies, only Aequitas
Fully-Directed was able to improve the original model by re-
training using these inputs (Figure 4 through Figure 6). How-
ever, the percentage of biased outputs decreased by so little
(<1%) that this is likely not a result of those inputs being truly
discriminatory. It is possibly a result of overfitting to this par-
ticular data set. Aside from that iteration of Aequitas Fully-
Directed, every other attempt to retrain the model using found
discriminatory inputs increased the percentage of biased data
between 2 percentage points and 8 percentage points.

These results are promising for the following reason. The
sensitive attribute we selected (the number of positive axillary
nodes detected) should be a deciding factor in determining
the column to be predicted (Whether the patient survives 5 or
more years following their operation). When we configured
Aequitas to assume that the number of positive axillary nodes
detected should not impact the survival rate of a patient, the
model was retrained using data that did not reflect the real
world. Since Aequitas did not end up notably improving the
original model using this assumption that does not reflect the
real world, it is an indication that Aequitas will be resistent to
overtly faulty configuration.

IV. EXPERIMENTATION WITH STUDENT
PERFORMANCE DATASET

A. Objective

The purposes of this experiment was to test the scalabil-
ity of the fairness estimation process. Aequitas measures the
fairness of a data set by randomly sampling with replacement
from the data set and measuring the fairness by counting all
the examples that has the same classification in all other at-
tributes, but different classifications for the sensitive attribute.
It then computes the percent bias by computing the percentage
of the biased input in the entire data set. In this experiment,
we aimed to test the effect of changing the sample size on the
error rate of the fairness testing. It is important to know the
relative accuracy of fairness estimation, since we are evaluat-
ing the success of the program based on how much it increases
fairness. If we increase the sample size, we would in theory
get a more accurate result. However, it would also require
more time.

B. Methodology

Since we are sampling with replacement, this method
would never produce a "true" measurement given that our data
set is large enough for every random sampling process to pro-
duce a different set of samples. However, we hypothesized
that the more we sample, the more our results would approach
a "true value." We can justify this by citing the central limit
theorem. We know that as we increase the sample size, the
probability distribution of the bias in the data set will be a
Gaussian curve. This allows us to treat the peak as the "true

value." However, this is improbable as we don’t have the time
or the computational power to sample indefinitely. Thus, we
need to determine a sample size that will create sufficiently
small fluctuation to allow us to deem the peak as being close
enough to the "true value."

It was important to determine a threshold for the error value
we could call a "small fluctuation." Since the final bias could
be interpreted as a Gaussian curve, we needed to choose an er-
ror that translated to a close cluster around the Gaussian peak.
A common width measurement for Gaussian is to measure the
width of the Gaussian at height that is 1/e of the total height.
All value should have an 86% chance of being within this in-
terval, which means that they would have 14% chance of be-
ing outside this interval. If we divide this by 2, we get 7%.
Therefore, if the uncertainty is less than 7%, we would decide
that our values are sufficiently close to the peak.

We designed our experiment around this principle. In par-
ticular, we measured the bias of a particular sample size by
taking an average of five independent measurements. Then we
computed the error by computing the standard deviation of the
mean. We incremented this number by 1% of the population.
We stopped once three consecutive error measurements were
below the 7% threshold.

For the experiment, we chose a fictional data set on educa-
tion with 1000 data points. We chose gender as the sensitive
attribute.

C. Results

Figure 1 shows the plot of percent bias found versus the
sample size. Error bar displayed were computed based on the
standard deviation of the mean.

Figure 1. The plot of percent bias found versus the sample size. Error
bar displayed were computed based on the standard deviation of the
mean.

Figure 2 is the plot of percent error found versus the sam-
ple size. We stopped taking data after the percent error was
consistently below 7%.

D. Discussion

For a population of 1000, we reached a sufficient sample
size of 600, or 60%. Thus, we can use this result when we test
other data sets by starting with a sample size of 60% of the
original, and incrementing or decrementing as we see fit.
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Figure 2. The plot of percent error found versus the sample size. The
error was computed from the standard deviation of the mean.

V. EXPERIMENTATION WITH DEFAULT OF CREDIT
CARD CLIENTS DATASET

A. Objective

We wanted to apply Aequitas to a data set with many more
columns than the ones we have analyzed so far. For that rea-
son, we picked a data set4 that compiled data about the default
of credit card clients. In particular, the data set described the
profile of a client, and the payment and debt history of their
credit card, and whether or not they had to default on their
debt. In this case, the data set had 24 attributes, including the
classification that we wanted to predict.

B. Methods

The data set that we obtained contained the following at-
tributes of the client profile: credit line, sex, education, mar-
ital status, and age. About their credit card payment history,
for six months it compiled the amount of payments that the
client missed, the amount owed, and the amount payed. This
gave a single vector of 23 dimensions. The last column of the
data set stated whether the client defaulted on the credit card
on the month after the information was compiled.

The data set had about 110,000 rows, each of them with 24
columns. This made it much bigger than the other data sets
we have looked at before.

After we pre-processed the data set, by changing the yes/no
column that we wanted to predict by 1 and −1, we created a
model through a Decision Tree Classifier algorithm, available
through the Scikit-learn Python library. We then ran Aequitas
of all three versions on this data set and retrained the model
with the collected discriminatory inputs. We then proceeded
to repeat this process on the resulting models two more times.

C. Results

These are the results of Aequitas on the default of credit
card clients model.

When ran Aequitas Random,

Figure 3. The plot of percent bias found versus the number of itera-
tions.

When ran Aequitas Semi-Directed,

Figure 4. The plot of percent bias found versus the number of itera-
tions.

When ran Aequitas Fully-Directed,

Figure 5. The plot of percent bias found versus the number of itera-
tions.

D. Discussion

As it was mentioned in Section I, we question whether Ae-
quitas Fully Directed and Aequitas Semi-Directed are ver-
sions of the algorithm that are worth using in a application
setting, as the amount of inputs that they give are not much
more than the ones that Aequitas Random gives. Furthermore,
in the retraining process, we are not guaranteed to use all of
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the inputs. In fact, the core of the algorithm is that we only
use a portion of this inputs on each iteration.

We wonder whether it might be more worthwhile to run
Random, Semi-Directed, and Fully Directed in succession,
based on how many inputs are generated by each, and whether
that quantity is sufficient to retrain the model. However, there
are also drawbacks to this approach, as it could take much
longer to run all three types of Aequitas than it is to just run a
single Fully Directed version.

Finally, on our personal machine, each run of Aequitas

Fully Directed took about half an hour, which is much longer
than we would like it to be for a web application.
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A Time Complexity Analysis for our Comps Group Implementation
of Aequitas Fully Directed.

Michael Worrell, Yemi Shin, Yunping Wang, and Juanito Zhang Yang
Department of Computer Science, Carleton College, 300 North College Street, Northfield, MN, 55057
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For our Comps this trimester, we did research into and worked to implement a modified version
of the machine learning fairness algorithm “Aequitas.” For this analysis write up, we will be
discussing the time complexity of our own implementation of the algorithm presented in the
original Aequitas paper.
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Time complexity analysis paper preface: What to expect, and Why.

The original Aequitas paper did not include a time complexity analysis of their own algorithm.
We therefore would like to present our own time complexity analysis of our own
implementation.

It is also important that we record the time complexity analysis of our own implementation,
because we made fundamental changes to the original algorithm for the sake of runtime
optimization that drastically changed the time complexity that would have resulted from
perfectly implementing the original Aequitas paper.

When measuring the time complexity, we are measuring it in terms of Big O notation. However,
we will be measuring the time complexity of our algorithm in the average case. The reason we
are doing this is because several of the data structures we are using, such as sets (which in
Python are implemented as dictionaries) have a time complexity of in the average case, but
a time complexity of in the worst case.

To better represent what elements of Aequitas are likely to take up the largest number of
computations, we will treat the average case as the standard for data structures, while keeping
everything else in terms of the worst case.

This time complexity writeup will only discuss the time complexity of Aequitas Fully Directed.
One reason for this is because out of all of the versions of the code we implemented, Aequitas
Fully directed is the one we spent the most time optimizing, testing, and fixing throughout our
comps project, and as a result is more in tune with the spirit of our Comps project.

Variable definitions used throughout this time complexity analysis

Here are variables that will be used throughout the remainder of this time complexity analysis.
For any additional questions, read the

● = global_iteration_limit, as defined in our Aequitas configuration file.

● = local_iteration_limit, as defined in our Aequitas configuration file.

● = The set of sensitive features

● = The i_th sensitive feature

● = The set of values that are possible for the sensitive feature Si

● = The time it takes to return classifications for an input in the
machine learning model.

● = The set of parameters in any given input.

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=O(1)#0
https://www.codecogs.com/eqnedit.php?latex=O(n)#0
https://www.codecogs.com/eqnedit.php?latex=g#0
https://www.codecogs.com/eqnedit.php?latex=l#0
https://www.codecogs.com/eqnedit.php?latex=S#0
https://www.codecogs.com/eqnedit.php?latex=Si#0
https://www.codecogs.com/eqnedit.php?latex=Ri#0
https://www.codecogs.com/eqnedit.php?latex=O(model.predict)#0
https://www.codecogs.com/eqnedit.php?latex=P#0
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Time Complexity Analysis: Helper function & common operations time complexities.

While the Aequitas_fully_directed_sklearn algorithm works using custom functions, it also relies
upon previously designed functions and operations that have their own previously established
time complexities. In this part, we will record their time complexities for reference when
calculating the Aequitas_fully_directed_sklearn time complexity.

Time Complexity Analysis, Part 1: NumPy Python Library

The proof of concept implementation that we built our version of Aequitas from used NumPy
(Numerical Python) functions. The NumPy library is what our implementation uses in the
processing of multidimensional array objects, which Aequitas uses to store and manipulate
inputs. The NumPy functions used in Aequitas_fully_directed_sklearn and their time
complexities are as follows:

● np.asarray(input) has a time complexity of . This is true because this function is
copying the data into a new array object, which runs in time.

● np.delete(input, index) has a time complexity of . This works in an essentially
identical way to removing items from an array, which runs in time.

● np.reshape(input) has a time complexity of . This is because reshape appears to
change how the stored data is interpreted, not how the data itself is stored.

Time Complexity Analysis, Part 2: Python Set Operations

Our Aequitas implementation uses sets to help keep track of which inputs were discovered as
being discriminatory. The Python set operations used and their time complexities are as follows:

● Adding an item to a set in python has a time complexity of .

● Checking whether an item is present in a set in python has a time complexity of .

Time Complexity Analysis, Part 3: Python List Operations

Our Aequitas implementation uses sets to help keep track of which inputs were discovered as
being discriminatory. The Python list operations used in Aequitas_fully_directed_sklearn and
their time complexities are as follows:

● Appending an item to a python list has a time complexity of .

● Retrieving an item from a python list has a time complexity of .

Time Complexity Analysis, Part 4: Miscellaneous functions

https://www.codecogs.com/eqnedit.php?latex=O(%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(n)#0
https://www.codecogs.com/eqnedit.php?latex=O(%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(n)#0
https://www.codecogs.com/eqnedit.php?latex=O(1)#0
https://www.codecogs.com/eqnedit.php?latex=O(1)#0
https://www.codecogs.com/eqnedit.php?latex=O(1)#0
https://www.codecogs.com/eqnedit.php?latex=O(1)#0
https://www.codecogs.com/eqnedit.php?latex=O(1)#0
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There are also miscellaneous functions used throughout several important functions. The time
complexities of these functions that are used in Aequitas_fully_directed_sklearn are as follows:

● random.randint(0, n) has a time complexity of .

● random.choice(array or list) has a time complexity of .

● Fully_Direct.normalize_probability has a time complexity of .

Time Complexity Analysis, Part 5: Basinhopping

Basinhopping, as we use it in our implementation, has the following parameters:

- func (function to put under test)

- x0 (the starting inputs for the basinhopping process)

- stepsize

- take_step (algorithm determining how perturbation takes a step, or a constant value)

- minimizer_kwargs (minimizer used)

- niter (number of iterations)

The basinhopping function works by taking some input, deciding how large of a step to take and
where to take the step, perturbing the input by that step amount, using the function on the
perturbed inputs using the minimizer to receive a score it is attempting to minimize, and then
repeating until conditions inherent to the minimizer are met, up to a maximum of niter times.

For each call to basinhopping in our algorithm, stepsize is constant. So, the only parameters that
we need to consider for runtime purposes are func, x0, take_step, minimizer_kwargs, and niter.
From this, we see that the time complexity of the basin hopping algorithm is

.

Time Complexity Analysis: Aequitas_fully_directed_sklearn.

Aequitas_fully_directed_sklearn can be split into two parts. The first of these parts performs
global discovery to find discriminatory inputs, and the second of these parts performs local
discovery to find disriminatory inputs in the vicinity of discrimnatory inputs found during global
discovery.

Aequitas_fully_directed_sklearn, Part 1: Global discovery time complexity

For the global discovery portion of the Aequitas algorithm we implemented, Aequitas runs the
basinhopping function one time. This means that the global discovery algorithm has a time

https://www.codecogs.com/eqnedit.php?latex=O(1)#0
https://www.codecogs.com/eqnedit.php?latex=O(1)#0
https://www.codecogs.com/eqnedit.php?latex=O(%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(niter%20*%20(O(func)%20%2B%20O(take%5C_step)%20%20%2B%20O(minimizer%5C_kwargs)))#0
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complexity of . The next thing to do is calculate the time complexity of
basinhopping during this global discovery process.

Aequitas_fully_directed_sklearn, Part 1, Subsection 1: basinhopping

Here, the basin hopping parameters that are relevant to the time complexity are:

● func ← Fully_Direct.evaluate_global

● take_step ← Fully_Direct.global_discovery

● minimizer_kwargs ← minimizer (more specifically, a L-BFGS-B method minimizer).

● niter ←

Using the definition from Time Complexity Analysis, Part 5, we find that the time complexity for
each runthrough of the basin hopping algorithm during local search becomes

Expanding upon the time complexity equation we found in “Aequitas_fully_directed_sklearn,
Part 2”, the time complexity of global discovery becomes

.

We will now describe the time complexity of each relevant function that is used within
basinhopping for aequitas_fully_directed_sklearn global discovery, and will then bring them
together after each function has been evaluated in detail.

Aequitas_fully_directed_sklearn, Part 1, Subsection 2: Fully_Direct.global_discovery

First, global discovery generates a random seed, which has a time complexity of . Then, the
function random.randint(low, high) repeats for each parameter in the provided input, and uses
low and high corresponding to the range of possible values for the chosen parameter. Since
random.randint(low, high) has a time complexity of , this means that generating a new
global input adds to the time complexity of Fully_Direct.global_discovery.

Lastly, Setting the sensitive feature value for the new input to 0 has an average case time
complexity of . This means that this function has a time complexity of .

Aequitas_fully_directed_sklearn, Part 1, Subsection 3: Fully_Direct.evaluate_global

For the first part of this function, the function makes calls to np.asarray, np.reshape, and
model.predict are made, as well as adds to a set and checks whether an item is already present in

https://www.codecogs.com/eqnedit.php?latex=O(basinhopping)#0
https://www.codecogs.com/eqnedit.php?latex=g#0
https://www.codecogs.com/eqnedit.php?latex=O(niter%20*%20(O(func)%20%2B%20O(take%5C_step)%20%20%2B%20O(minimizer%5C_kwargs)))#0
https://www.codecogs.com/eqnedit.php?latex=O(g%20*%20(O(fully%5C_direct.evaluate%5C_global)%20%2B%20O(fully%5C_direct.global%5C_discovery)%20%20%2B%20O(minimizer)))#0
https://www.codecogs.com/eqnedit.php?latex=O(1)#0
https://www.codecogs.com/eqnedit.php?latex=O(1)#0
https://www.codecogs.com/eqnedit.php?latex=O(%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(1)#0
https://www.codecogs.com/eqnedit.php?latex=O(%7CP%7C)#0
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a set. This has an average time complexity of . If the original input
is present in the global_discovery discriminatory input set, the function ends here.

If the original input is not present in the global_discovery discriminatory input set, the function
loops through the inputs that differ only in the given sensitive feature. For each new
input, calls to np.asarray, np.reshape, and model.predict are made. This has an average time
complexity of for each new input tested. This means that the
entirety of this internal loop has a time complexity of .

This continues until a discriminatory input is discovered, or until the function proves that the
original input is not discriminatory for the sensitive feature selected. In the event that a
discriminatory input is discovered, adding the original input to the global_discovery
discriminatry input set and appending it to the global_discovery input list has an average time
complexity of .

All of this tells us that our Fully_Direct.evaluate_global function has three cases to consider.

● In the first case, the original input is already present in the global_discovery
discriminatory input set. This case has a time complexity of

.

● In the second case, the original input is not present in the global_discovery discriminatory
input set, and is discovered to be discriminatory in regards to the selected sensitive
feature. This case has a time complexity of

, which
can be simplified to .

● In the third case, the original input is not present in the global_discovery discriminatory
input set, and is discovered to not be discriminatory in regards to the selected sensitive
feature. This case has a time complexity of

,

which can be simplified to .

Putting all of this together, this means that the function fully_direct.evaluate_global has a time
complexity of .

Aequitas_fully_directed_sklearn, Part 1, Subsection 4: minimizer

The minimizer Aequitas uses is L-BFGS-B. According to Dewi Retno Sari Saputro and Purnami
Widyaningsih, that particular minimizer algorithm has a time complexity of , where m is

https://www.codecogs.com/eqnedit.php?latex=O(O(model.predict)%20*%20%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=%7CR_%7Binput%7D%7C#0
https://www.codecogs.com/eqnedit.php?latex=O(O(model.predict)%20*%20%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(%7CR_%7Binput%7D%7C%20*%20O(model.predict)%20*%20%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(1)#0
https://www.codecogs.com/eqnedit.php?latex=O(O(model.predict)%20*%20%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(O(model.predict)%20*%20%7CP%7C))%20%2B%20O(%7CR_%7Binput%7D%7C%20*%20O(model.predict)%20*%20%7CP%7C)%20%2B%20O(1))#0
https://www.codecogs.com/eqnedit.php?latex=O(%7CR_%7Binput%7D%7C%20*%20O(model.predict)%20*%20%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(O(model.predict)%20*%20%7CP%7C))%20%2B%20O(%7CR_%7Binput%7D%7C%20*%20O(model.predict)%20*%20%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(%7CR_%7Binput%7D%7C%20*%20O(model.predict)%20*%20%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(%7CR_%7Binput%7D%7C%20*%20O(model.predict)%20*%20%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(mn)#0
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the number of inputs (in our case, the number of parameters for the input to test), and n is the
maximum number of variable metric corrections used to define the limited memory matrix.
However, the value of n is locked to a default value for the
scipy.optimize.minimize(“L-BFGS-B”) function. This means that the time complexity of the
minimizer function is .

Aequitas_fully_directed_sklearn, Part 1, Subsection 5: Bringing everything together

Now that we know the time complexity for all of the functions and methods utilized in the global
discovery stages of our implementation, we can put them together. The new time complexity can
be expanded and then simplified as follows:

→

→

→

→

→

Aequitas_fully_directed_sklearn, Part 2: Global discovery time complexity

For the local discovery portion of the Aequitas algorithm we implemented, Aequitas runs the
basinhopping function once per discriminatory input found during global discovery. This means
that the local discovery algorithm has a time complexity of . The next
thing to do is calculate the time complexity of basinhopping during this global discovery process.

Aequitas_fully_directed_sklearn, Part 2, Subsection 1: basinhopping

Here, the basin hopping parameters that are relevant to the time complexity are:

● func ← Fully_Direct.evaluate_local

● take_step ← Fully_Direct.local_perturbation

● minimizer_kwargs ← minimizer (more specifically, a L-BFGS-B method minimizer).

● niter ←

Using the definition from Time Complexity Analysis, Part 5, we find that the time complexity for
each runthrough of the basin hopping algorithm during local search becomes

https://www.codecogs.com/eqnedit.php?latex=O(%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(niter%20*%20(O(func)%20%2B%20O(take%5C_step)%20%20%2B%20O(minimizer%5C_kwargs)))#0
https://www.codecogs.com/eqnedit.php?latex=O(g%20*%20(O(Fully%5C_Direct.evaluate%5C_global)%20%2B%20O(Fully%5C_Direct.global%5C_discovery)%20%20%2B%20O(minimizer)))#0
https://www.codecogs.com/eqnedit.php?latex=O(g%20*%20(O(%7CR_%7Binput%7D%7C%20*%20O(model.predict)%20*%20%7CP%7C)%20%2B%20O(P)%20%2B%20O(%7CP%7C)))#0
https://www.codecogs.com/eqnedit.php?latex=O(g%20*%20O(%7CR_%7Binput%7D%7C%20*%20O(model.predict)%20*%20%7CP%7C))#0
https://www.codecogs.com/eqnedit.php?latex=O(g%20*%20%7CR_%7Binput%7D%7C%20*%20%7CP%7C%20*%20O(model.predict))#0
https://www.codecogs.com/eqnedit.php?latex=O(g%20*%20O(basinhopping))#0
https://www.codecogs.com/eqnedit.php?latex=l#0
https://www.codecogs.com/eqnedit.php?latex=O(niter%20*%20(O(func)%20%2B%20O(take%5C_step)%20%20%2B%20O(minimizer%5C_kwargs)))#0
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Expanding upon the time complexity equation we found in Aequitas_fully_directed_sklearn,
Part 2, the time complexity of local discovery becomes

.

We will now describe the time complexity of each relevant function that is used within
basinhopping for aequitas_fully_directed_sklearn local discovery, and will then bring them
together after each function has been evaluated in detail.

Aequitas_fully_directed_sklearn, Part 2, Subsection 2: Fully_Direct.evaluate_local

For the first part of this function, the function makes calls to np.asarray, np.reshape, and
model.predict are made, as well as adds to a set and checks whether an item is already present in
a one of two separate sets, one from the global discovery step, and one from the local discovery
step. This has an average time complexity of . If the original input is
present in either the global_discovery discriminatory input set or the local_discovery
discriminatory input set, the function ends here.

If the original input is not present in either discriminatory input set, the function loops through
the inputs that differ only in the given sensitive feature. For each new input, calls to
np.asarray, np.reshape, and model.predict are made. This has an average time complexity of

for each new input tested. This means that the entirety of this
internal loop has a worst case time complexity of .

This continues until a discriminatory input is discovered, or until the function proves that the
original input is not discriminatory for the sensitive feature selected. In the event that a
discriminatory input is discovered, adding the original input to the local_discovery discriminatry
input set and appending it to the local_discovery input list has an average time complexity of

.

All of this tells us that our Fully_Direct.evaluate_local function has three cases to consider.

● In the first case, the original input is already present in either of the global_discovery or
local_discovery discriminatory input sets. This case has a time complexity of

.

● In the second case, the original input is not present in either discriminatory input set, and
is discovered to be discriminatory in regards to the selected sensitive feature. This case
has a time complexity of

, which
can be simplified to .

https://www.codecogs.com/eqnedit.php?latex=O(local%5C_iteration%5C_limit%20*%20(O(fully%5C_direct.evaluate%5C_local)%20%2B%20O(fully%5C_direct.local%5C_perturbation)%20%20%2B%20O(minimizer)))#0
https://www.codecogs.com/eqnedit.php?latex=O(O(model.predict)%20*%20%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=%7CR_%7Binput%7D%7C#0
https://www.codecogs.com/eqnedit.php?latex=O(O(model.predict)%20*%20%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(%7CR_%7Binput%7D%7C%20*%20O(model.predict)%20*%20%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(1)#0
https://www.codecogs.com/eqnedit.php?latex=O(O(model.predict)%20*%20%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(O(model.predict)%20*%20%7CP%7C))%20%2B%20O(%7CR_%7Binput%7D%7C%20*%20O(model.predict)%20*%20%7CP%7C)%20%2B%20O(1))#0
https://www.codecogs.com/eqnedit.php?latex=O(%7CR_%7Binput%7D%7C%20*%20O(model.predict)%20*%20%7CP%7C)#0
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● In the third case, the original input is not present in the either discriminatory input set,
and is discovered to not be discriminatory in regards to the selected sensitive feature.
This case has a time complexity of

,

which can be simplified to .

Putting all of this together, this means that the function Fully_Direct.evaluate_local has a time
complexity of .

Aequitas_fully_directed_sklearn, Part 2, Subsection 3: Fully_Direct.evaluate_input

This particular function behaves identically to the function Fully_Direct.evaluate_local, with a
few notable exceptions. When it runs, it does not check or add to any discriminatory input sets.
Rather, it returns a different numerical result once the input has been identified as discriminatory
or non-discriminatory. This changes the cases to consider as follows:

● The first case no longer exists, so there is no time complexity to consider.

● In the second case, the original input is discovered to be discriminatory in regards to the
selected sensitive feature. This case has a time complexity of

.

● In the third case, the original input is discovered to not be discriminatory in regards to the
selected sensitive feature. This case has a time complexity of

.

Putting all of this together, this means that the function Fully_Direct.evaluate_input has a time
complexity of .

Aequitas_fully_directed_sklearn, Part 2, Subsection 4: Fully_Direct.local_perturbation

First, this function copies input bounds, one per parameter index, to a new array. This part has a
time complexity of . Then, it performs between 2 and 3 random.choice() operations that
each have a time complexity of , which since means the time complexity for
fully_direct.local_perturbation is still at .

After this, fully_direct.local_perturbation runs fully_direct.evaluate_input, which has a time
complexity of .

Then, it performs constant time operations until it normalizes the probability for the perturbed
input, which has a time complexity of .

https://www.codecogs.com/eqnedit.php?latex=O(O(model.predict)%20*%20%7CP%7C))%20%2B%20O(%7CR_%7Binput%7D%7C%20*%20O(model.predict)%20*%20%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(%7CR_%7Binput%7D%7C%20*%20O(model.predict)%20*%20%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(%7CR_%7Binput%7D%7C%20*%20O(model.predict)%20*%20%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(%7CR_%7Binput%7D%7C%20*%20O(model.predict)%20*%20%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(%7CR_%7Binput%7D%7C%20*%20O(model.predict)%20*%20%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(%7CR_%7Binput%7D%7C%20*%20O(model.predict)%20*%20%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(1)#0
https://www.codecogs.com/eqnedit.php?latex=O(%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(%7CR_%7Binput%7D%7C%20*%20O(model.predict)%20*%20%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(%7CP%7C)#0
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Bringing this all together, we find that Fully_Direct.local_perturbation has a time complexity of
.

Aequitas_fully_directed_sklearn, Part 2, Subsection 5: minimizer

The minimizer function used for local discovery is identical to the minimizer function used for
global discovery (see Aequitas_fully_directed_sklearn, Part 1, Subsection 4). This means that the
time complexity of the minimizer is .

Aequitas_fully_directed_sklearn, Part 2, Subsection 6: Bringing everything together

Now that we know the time complexity for all of the functions and methods utilized in the local
discovery stages of our implementation, we can put them together. The new time complexity can
be expanded and then simplified as follows:

→

→

→

→

→

→

Aequitas_fully_directed_sklearn, Part 3, Subsection 1: Combining both parts.

Now we can look at the time complexities of global discovery and local discovery alongside
each other. Combining both to the same equation, the time complexity becomes

,

which can be simplified to a time complexity of .

Aequitas_fully_directed_sklearn, Part 3, Subsection 2: Time complexity with multiple
sensitive features

In our implementation, we allow the user to test multiple sensitive features at once. However, we
do it slightly differently than the original Aequitas paper suggests we should. We chose to do this
in order to improve runtime to make the site easier to use and more accessible.

https://www.codecogs.com/eqnedit.php?latex=O(%7CR_%7Binput%7D%7C%20*%20O(model.predict)%20*%20%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(%7CP%7C)#0
https://www.codecogs.com/eqnedit.php?latex=O(g%20*%20O(basinhopping))#0
https://www.codecogs.com/eqnedit.php?latex=O(g%20*%20O(niter%20*%20(O(func)%20%2B%20O(take%5C_step)%20%20%2B%20O(minimizer%5C_kwargs))))#0
https://www.codecogs.com/eqnedit.php?latex=O(g%20*%20O(l%20*%20(O(Fully%5C_Direct.evaluate%5C_local)%20%2B%20O(Fully%5C_Direct.local%5C_perturbation)%20%20%2B%20O(minimizer))))#0
https://www.codecogs.com/eqnedit.php?latex=O(g%20*%20O(l%20*%20(O(%7CR_%7Binput%7D%7C%20*%20O(model.predict)%20*%20%7CP%7C)%20%2B%20O(%7CR_%7Binput%7D%7C%20*%20O(model.predict)%20*%20%7CP%7C)%20%20%2B%20O(%7CP%7C))))#0
https://www.codecogs.com/eqnedit.php?latex=O(g%20*%20O(l%20*%20O(%7CR_%7Binput%7D%7C%20*%20O(model.predict)%20*%20%7CP%7C)))#0
https://www.codecogs.com/eqnedit.php?latex=O(g%20*%20l%20*%20%7CR_%7Binput%7D%7C%20*%20%7CP%7C%20*%20O(model.predict))#0
https://www.codecogs.com/eqnedit.php?latex=O(g%20*%20%7CR_%7Binput%7D%7C%20*%20%7CP%7C%20*%20O(model.predict))%20%2B%20O(g%20*%20l%20*%20%7CR_%7Binput%7D%7C%20*%20%7CP%7C%20*%20O(model.predict))#0
https://www.codecogs.com/eqnedit.php?latex=O(g%20*%20l%20*%20%7CR_%7Binput%7D%7C%20*%20%7CP%7C%20*%20O(model.predict))#0


11

To do this, we run the algorithm all over again on different sensitive features. This translates into
a time complexity of

.

This is great, but it could look cleaner. After pulling all of the constants out of the summation,
the time complexity for Aequitas Fully Directed when testing for multiple sensitive features
simultaneously in our implementation can be rewritten in a way we believe is more informative.

We present to you, the worst case time complexity for our implementation of the Aequitas
Algorithm that allows for multiple non-binary sensitive features while making runtime
optimizations.

https://www.codecogs.com/eqnedit.php?latex=O%5CBigg%7B(%7D%20%5Csum_%7B%5Cforall%20i%3A%20S_%7Bi%7D%20%5Cin%20S%7D%5E%7B%7D%20g%20*%20l%20*%20%7CP%7C%20*%20O(model.predict)%20*%20%7CR_%7Bi%7D%7C%5CBigg%7B)%7D#0
https://www.codecogs.com/eqnedit.php?latex=O%5CBigg%7B(%7Dg%20*%20l%20*%20%7CP%7C%20*%20O(model.predict)%20*%20%5Cbigg%7B(%7D%5Csum_%7B%5Cforall%20i%3A%20S_%7Bi%7D%20%5Cin%20S%7D%5E%7B%7D%20%7CR_%7Bi%7D%7C%5Cbigg%7B)%7D%5CBigg%7B)%7D#0
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Hello Comps Group Members,
I am not positive whether what I am experiencing is a side effect of how the code should run, or if

something has been improperly implemented, although I believe that it might be the latter.
Regardless of whether using binary of non-binary sensitive attributes, within the double for loops

in evaluate_global and evaluate_local, i and j do not iterate through a number of values that increass with
the number of total values possible for the sensitive parameter.  What I mean by this is, for the following
code:

for i in self.input_bounds[self.sensitive_param_idx]:
for j in self.input_bounds[self.sensitive_param_idx]:

if i < j:
<Rest of evaluate code here>

The j loop will run at most twice for each time the i loop runs, regardless of the total number of sensitive
parameters, and the i loop will run at most twice for each time evaluate_global or evaluate_local is
called

In what I believe is a side effect of this, as the code stood on Thursday (not sure if these changes
have been fixed since), local and global search only add discriminatory inputs where the sensitive
parameter equals 0. Here is what I believe might be causing these effects.

The data stored at self.input_bounds is in the form of an array with two values each,
corresponding to the number of possible values that the parameter could contain.

Using “Employee.csv” as an example, self.input_bounds[self.sensitive_param_idx] would
return [0, 1] on the “Gender” sensitive attribute, [0, 2] on the “Education” sensitive attribute, and [0, 6]
on the “JoiningYear” sensitive attribute.

The double nested for loops take this information instead of running i = 0, i = 1, i = 2 … i = 6 for
the sensitive attribute “JoiningYear”, it runs i = 0, i = 6 instead.

An in depth example of this can be observed when running on the sensitive parameter
“Education”. There are only three possible values, and the result one gets when retrieving
self.input_bounds[self.sensitive_param_idx] for this parameter is [0, 2].

Instead of the for loops iterating through
i = 0 & j = 0 i = 0 & j = 1 i = 0 & j = 2
i = 1 & j = 0 i = 1 & j = 1 i = 1 & j = 2
i = 2 & j = 0 i = 2 & j = 1 i = 2 & j = 2
The for loops instead iterate through
i = 0 & j = 0 i = 0 & j = 2
i = 2 & j = 0 i = 2 & j = 2
Because of the way the if statement is written, the code following the if statement proceeds for
i = 0 & j = 2
Instead of proceeding for the values of
i = 0 & j = 1 i = 0 & j = 2
i = 1 & j = 2

What I wanted to check was, is this behavior intentional?
If it is, could one of you help me understand why Aequitas needs to work this way, so that I can

become more on the right track in understanding how our code should function?
If it is not intentional, could you work to fix this in the main code? If this is the case, it is most

likely messing with our code’s ability to successfully identify all discriminatory inputs for non-binary
sensitive parameters, as well as giving us an optimistic outlook as to the legitimate runtime of our code.

Best, Michael Worrell.



Why/How evaluate_input, evaluate_global, and evaluate_local need/needed to be changed
- Michael Worrell, to my fellow members of Comps Group Aequitas Fairness

Part I: Improper for loop use in our evaluation
functions

Here is the pseudocode for the search algorithm
used in Aequitas.

However, this algorithm covers all calls to
basinhopping, not just evaluate_local. A singular
basinhopping iteration uses this portion of the above
algorithm:

The great thing about basinhopping is that it
utilizes the local_perturbation and
global_perturbation functions to perform the
following lines of the algorithm:

As the pseudocode states, note that I is the
perturbed input that is being plugged into the
evaluate_local function.  This means that
evaluate_local essentially performs the following
steps:

Now, this is where the issue of non-binary
sensitive attributes was causing our implementaion to
not only perform extra, unneeded work, but actively
go against the algorithm presented in the original
paper.

What this is saying is that if I is the input that
reached this step, I(d) (sorry, couldn’t figure out how
to type out the double I in google docs) is the set of
all inputs that are identical to I with the exception of
their sensitive parameter, with the number of entries
in I(d) equaling the number of values possible for the
sensitive attribute.

What should happen in evaluate_local and
evaluate_global is that it should check whether the
entry I and some entry I’ in I(d) cause the model to
return different values, in which case I should be
added to the local discrimination set.  What we are
doing is checking whether some entry I’ in I(d), and
another entry I’ in I(d), cause the model to return
different values, in which case whichever sensitive
parameter of I’ has the lowest value would be added
to the local discrimination set..

This was not limited to evaluate_local.. We used
our previous method of identifying discriminatory
inputs in evaluate_local, evaluate_global, and
evaluate_input (more on that  in part III).

We also used this method of identifying
discriminatory input in Retrain_Sklearn, which led to
an increased number of inputs being identified as
discriminatory.

In my branch, michael_runtimeOptimizations, I
have adjusted how each of the evaluate functions (in
Aequitas as well as during Retraining_Sklearn)



Why/How evaluate_input, evaluate_global, and evaluate_local need/needed to be changed
- Michael Worrell, to my fellow members of Comps Group Aequitas Fairness

operates in order to keep our code more in line with
the original Aequitas paper.

Part II. Remnants of binary sensitive parameter
cases in our code.

The evaluate_input functions within
Aequitas_Fully_Directed,  Aequitas_Semi_Directed,
and Aequitas_Random were hard-coded for a binary
column-to-be-predicted that had potential values of -1
and 1 only. Because we are working with a binary
column-to-be-predicted that can have values of 0 or
1, the previous code was often inaccurate when
evaluating whether a given input was discriminatory.

Part III. Retraining_Sklearn

One last change that needed to be made to our
Aequitas code was to include “threshold” in the
evaluate_input function within Retrain_Sklearn.
Before, similar to the evaluate_input functions
mentioned in Part II, Retrain_Sklearn was hard-coded
for a binary column-to-be-predicted that had potential
values of -1 and 1 only, and worked without the need
for threshold. Because we want to provide users the
option to change the threshold value, retrain_sklearn
and several functions contained therein have an
additional parameter for threshold (see .py file for
exact parameter location for each function, should the
need arise before the code freeze).


